本文整理汇总了Python中allennlp.nn.util.sequence_cross_entropy_with_logits方法的典型用法代码示例。如果您正苦于以下问题:Python util.sequence_cross_entropy_with_logits方法的具体用法?Python util.sequence_cross_entropy_with_logits怎么用?Python util.sequence_cross_entropy_with_logits使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.nn.util
的用法示例。
在下文中一共展示了util.sequence_cross_entropy_with_logits方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _loss
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def _loss(self, hidden, mask, gold_tags, output_dim):
logits = self.task_output(hidden)
reshaped_log_probs = logits.view(-1, self.num_classes)
class_probabilities = F.softmax(reshaped_log_probs, dim=-1).view(output_dim)
output_dict = {"logits": logits, "class_probabilities": class_probabilities}
if gold_tags is not None:
output_dict["loss"] = sequence_cross_entropy_with_logits(logits,
gold_tags,
mask,
label_smoothing=self.label_smoothing)
for metric in self.metrics.values():
metric(logits, gold_tags, mask.float())
return output_dict
示例2: test_sequence_cross_entropy_with_logits_masks_loss_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_masks_loss_correctly(self):
# test weight masking by checking that a tensor with non-zero values in
# masked positions returns the same loss as a tensor with zeros in those
# positions.
tensor = torch.rand([5, 7, 4])
tensor[0, 3:, :] = 0
tensor[1, 4:, :] = 0
tensor[2, 2:, :] = 0
tensor[3, :, :] = 0
weights = (tensor != 0.0)[:, :, 0].long().squeeze(-1)
tensor2 = tensor.clone()
tensor2[0, 3:, :] = 2
tensor2[1, 4:, :] = 13
tensor2[2, 2:, :] = 234
tensor2[3, :, :] = 65
targets = torch.LongTensor(numpy.random.randint(0, 3, [5, 7]))
targets *= weights
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights)
loss2 = util.sequence_cross_entropy_with_logits(tensor2, targets, weights)
assert loss.data.numpy() == loss2.data.numpy()
示例3: test_sequence_cross_entropy_with_logits_smooths_labels_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_smooths_labels_correctly(self):
tensor = torch.rand([1, 3, 4])
targets = torch.LongTensor(numpy.random.randint(0, 3, [1, 3]))
weights = torch.ones([2, 3])
loss = util.sequence_cross_entropy_with_logits(
tensor, targets, weights, label_smoothing=0.1
)
correct_loss = 0.0
for prediction, label in zip(tensor.squeeze(0), targets.squeeze(0)):
prediction = torch.nn.functional.log_softmax(prediction, dim=-1)
correct_loss += prediction[label] * 0.9
# incorrect elements
correct_loss += prediction.sum() * 0.1 / 4
# Average over sequence.
correct_loss = -correct_loss / 3
numpy.testing.assert_array_almost_equal(loss.data.numpy(), correct_loss.data.numpy())
示例4: test_sequence_cross_entropy_with_logits_averages_batch_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_averages_batch_correctly(self):
# test batch average is the same as dividing the batch averaged
# loss by the number of batches containing any non-padded tokens.
tensor = torch.rand([5, 7, 4])
tensor[0, 3:, :] = 0
tensor[1, 4:, :] = 0
tensor[2, 2:, :] = 0
tensor[3, :, :] = 0
weights = (tensor != 0.0)[:, :, 0].long().squeeze(-1)
targets = torch.LongTensor(numpy.random.randint(0, 3, [5, 7]))
targets *= weights
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights)
vector_loss = util.sequence_cross_entropy_with_logits(
tensor, targets, weights, average=None
)
# Batch has one completely padded row, so divide by 4.
assert loss.data.numpy() == vector_loss.sum().item() / 4
示例5: test_sequence_cross_entropy_with_logits_averages_token_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_averages_token_correctly(self):
# test token average is the same as multiplying the per-batch loss
# with the per-batch weights and dividing by the total weight
tensor = torch.rand([5, 7, 4])
tensor[0, 3:, :] = 0
tensor[1, 4:, :] = 0
tensor[2, 2:, :] = 0
tensor[3, :, :] = 0
weights = (tensor != 0.0)[:, :, 0].long().squeeze(-1)
targets = torch.LongTensor(numpy.random.randint(0, 3, [5, 7]))
targets *= weights
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights, average="token")
vector_loss = util.sequence_cross_entropy_with_logits(
tensor, targets, weights, average=None
)
total_token_loss = (vector_loss * weights.float().sum(dim=-1)).sum()
average_token_loss = (total_token_loss / weights.float().sum()).detach()
assert_almost_equal(loss.detach().item(), average_token_loss.item(), decimal=5)
示例6: test_sequence_cross_entropy_with_logits_gamma_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_gamma_correctly(self):
batch = 1
length = 3
classes = 4
gamma = abs(numpy.random.randn()) # [0, +inf)
tensor = torch.rand([batch, length, classes])
targets = torch.LongTensor(numpy.random.randint(0, classes, [batch, length]))
weights = torch.ones([batch, length])
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights, gamma=gamma)
correct_loss = 0.0
for logit, label in zip(tensor.squeeze(0), targets.squeeze(0)):
p = torch.nn.functional.softmax(logit, dim=-1)
pt = p[label]
ft = (1 - pt) ** gamma
correct_loss += -pt.log() * ft
# Average over sequence.
correct_loss = correct_loss / length
numpy.testing.assert_array_almost_equal(loss.data.numpy(), correct_loss.data.numpy())
示例7: test_sequence_cross_entropy_with_logits_alpha_list_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_alpha_list_correctly(self):
batch = 1
length = 3
classes = 4 # alpha float for binary class only
alpha = abs(numpy.random.randn(classes)) # [0, +inf)
tensor = torch.rand([batch, length, classes])
targets = torch.LongTensor(numpy.random.randint(0, classes, [batch, length]))
weights = torch.ones([batch, length])
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights, alpha=alpha)
correct_loss = 0.0
for logit, label in zip(tensor.squeeze(0), targets.squeeze(0)):
logp = torch.nn.functional.log_softmax(logit, dim=-1)
logpt = logp[label]
at = alpha[label]
correct_loss += -logpt * at
# Average over sequence.
correct_loss = correct_loss / length
numpy.testing.assert_array_almost_equal(loss.data.numpy(), correct_loss.data.numpy())
示例8: test_sequence_cross_entropy_with_logits_smooths_labels_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_smooths_labels_correctly(self):
tensor = torch.rand([1, 3, 4])
targets = torch.LongTensor(numpy.random.randint(0, 3, [1, 3]))
weights = torch.ones([2, 3])
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights, label_smoothing=0.1)
correct_loss = 0.0
for prediction, label in izip(tensor.squeeze(0), targets.squeeze(0)):
prediction = torch.nn.functional.log_softmax(prediction, dim=-1)
correct_loss += prediction[label] * 0.9
# incorrect elements
correct_loss += prediction.sum() * 0.1/4
# Average over sequence.
correct_loss = - correct_loss / 3
numpy.testing.assert_array_almost_equal(loss.data.numpy(), correct_loss.data.numpy())
示例9: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def forward(self,
tokens: Dict[str, torch.Tensor],
label: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
mask = get_text_field_mask(tokens)
embedded = self._embedder(tokens)
encoded = self._encoder(embedded, mask)
classified = self._classifier(encoded)
output: Dict[str, torch.Tensor] = {}
output['logits'] = classified
if label is not None:
self._f1(classified, label, mask)
output['loss'] = sequence_cross_entropy_with_logits(classified, label, mask)
return output
示例10: test_sequence_cross_entropy_with_logits_alpha_single_float_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_sequence_cross_entropy_with_logits_alpha_single_float_correctly(self):
batch = 1
length = 3
classes = 2 # alpha float for binary class only
alpha = (
numpy.random.rand() if numpy.random.rand() > 0.5 else (1.0 - numpy.random.rand())
) # [0, 1]
alpha = torch.tensor(alpha)
tensor = torch.rand([batch, length, classes])
targets = torch.LongTensor(numpy.random.randint(0, classes, [batch, length]))
weights = torch.ones([batch, length])
loss = util.sequence_cross_entropy_with_logits(tensor, targets, weights, alpha=alpha)
correct_loss = 0.0
for logit, label in zip(tensor.squeeze(0), targets.squeeze(0)):
logp = torch.nn.functional.log_softmax(logit, dim=-1)
logpt = logp[label]
if label:
at = alpha
else:
at = 1 - alpha
correct_loss += -logpt * at
# Average over sequence.
correct_loss = correct_loss / length
numpy.testing.assert_array_almost_equal(loss.data.numpy(), correct_loss.data.numpy())
示例11: _features_loss
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def _features_loss(self, hidden, mask, gold_tags, output_dict):
if gold_tags is None:
return
for feature in self.features:
logits = self.feature_outputs[feature](hidden)
loss = sequence_cross_entropy_with_logits(logits,
gold_tags[feature],
mask,
label_smoothing=self.label_smoothing)
loss /= len(self.features)
output_dict["loss"] += loss
for metric in self.features_metrics[feature].values():
metric(logits, gold_tags[feature], mask.float())
示例12: _get_loss
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def _get_loss(logits ,
targets ,
target_mask ) :
u"""
Takes logits (unnormalized outputs from the decoder) of size (batch_size,
num_decoding_steps, num_classes), target indices of size (batch_size, num_decoding_steps+1)
and corresponding masks of size (batch_size, num_decoding_steps+1) steps and computes cross
entropy loss while taking the mask into account.
The length of ``targets`` is expected to be greater than that of ``logits`` because the
decoder does not need to compute the output corresponding to the last timestep of
``targets``. This method aligns the inputs appropriately to compute the loss.
During training, we want the logit corresponding to timestep i to be similar to the target
token from timestep i + 1. That is, the targets should be shifted by one timestep for
appropriate comparison. Consider a single example where the target has 3 words, and
padding is to 7 tokens.
The complete sequence would correspond to <S> w1 w2 w3 <E> <P> <P>
and the mask would be 1 1 1 1 1 0 0
and let the logits be l1 l2 l3 l4 l5 l6
We actually need to compare:
the sequence w1 w2 w3 <E> <P> <P>
with masks 1 1 1 1 0 0
against l1 l2 l3 l4 l5 l6
(where the input was) <S> w1 w2 w3 <E> <P>
"""
relevant_targets = targets[:, 1:].contiguous() # (batch_size, num_decoding_steps)
relevant_mask = target_mask[:, 1:].contiguous() # (batch_size, num_decoding_steps)
loss = sequence_cross_entropy_with_logits(logits, relevant_targets, relevant_mask)
return loss
#overrides
示例13: test_loss_is_computed_correctly
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def test_loss_is_computed_correctly(self):
batch_size = 5
num_decoding_steps = 5
num_classes = 10
sample_logits = torch.randn(batch_size, num_decoding_steps-1, num_classes)
sample_targets = torch.from_numpy(numpy.random.randint(0, num_classes,
(batch_size, num_decoding_steps)))
# Mask should be either 0 or 1
sample_mask = torch.from_numpy(numpy.random.randint(0, 2,
(batch_size, num_decoding_steps)))
expected_loss = sequence_cross_entropy_with_logits(sample_logits, sample_targets[:, 1:].contiguous(),
sample_mask[:, 1:].contiguous())
# pylint: disable=protected-access
actual_loss = self.model._get_loss(sample_logits, sample_targets, sample_mask)
assert numpy.equal(expected_loss.data.numpy(), actual_loss.data.numpy())
示例14: _get_loss
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def _get_loss(
self, logits: torch.Tensor, targets: torch.Tensor, target_mask: torch.Tensor
) -> torch.Tensor:
r"""
Compute cross entropy loss of predicted caption (logits) w.r.t. target caption. The cross
entropy loss of caption is cross entropy loss at each time-step, summed.
Parameters
----------
logits: torch.Tensor
A tensor of shape ``(batch_size, max_caption_length - 1, vocab_size)`` containing
unnormalized log-probabilities of predicted captions.
targets: torch.Tensor
A tensor of shape ``(batch_size, max_caption_length - 1)`` of tokenized target
captions.
target_mask: torch.Tensor
A mask over target captions, elements where mask is zero are ignored from loss
computation. Here, we ignore ``@@UNKNOWN@@`` token (and hence padding tokens too
because they are basically the same).
Returns
-------
torch.Tensor
A tensor of shape ``(batch_size, )`` containing cross entropy loss of captions, summed
across time-steps.
"""
# shape: (batch_size, )
target_lengths = torch.sum(target_mask, dim=-1).float()
# shape: (batch_size, )
return target_lengths * sequence_cross_entropy_with_logits(
logits, targets, target_mask, average=None
)
示例15: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import sequence_cross_entropy_with_logits [as 别名]
def forward(self,
tokens: Dict[str, torch.Tensor],
label: torch.Tensor) -> Dict[str, torch.Tensor]:
# split the namespace into characters and tokens, since they
# aren't the same shape
characters = { 'characters': tokens['characters'] }
tokens = { 'tokens': tokens['tokens'] }
# get the tokens mask
mask = get_text_field_mask(tokens)
# get the cahracters mask, for which we use the nifty `num_wrapping_dims` argument
character_mask = get_text_field_mask(characters, num_wrapping_dims=1)
# decompose the shape into named parameters for future use
batch_size, sequence_length, word_length = character_mask.shape
# embed the characters
embedded_characters = self._character_embedder(characters)
# convert the embeddings from 4d embeddings to a 3d tensor
# the first dimension of this tensor is (batch_size * num_tokens)
# (i.e. each word is its own instance in a batch)
embedded_characters = embedded_characters.view(batch_size*sequence_length, word_length, -1)
character_mask = character_mask.view(batch_size*sequence_length, word_length)
# run the character LSTM
encoded_characters = self._character_encoder(embedded_characters, character_mask)
# reshape the output into a 3d tensor we can concatenate with the word embeddings
encoded_characters = encoded_characters.view(batch_size, sequence_length, -1)
# run the standard LSTM NER pipeline
embedded = self._word_embedder(tokens)
embedded = torch.cat([embedded, encoded_characters], dim=2)
encoded = self._encoder(embedded, mask)
classified = self._classifier(encoded)
if label is not None:
self._f1(classified, label, mask)
output["loss"] = sequence_cross_entropy_with_logits(classified, label, mask)
return output