本文整理汇总了Python中allennlp.nn.util.remove_sentence_boundaries方法的典型用法代码示例。如果您正苦于以下问题:Python util.remove_sentence_boundaries方法的具体用法?Python util.remove_sentence_boundaries怎么用?Python util.remove_sentence_boundaries使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.nn.util
的用法示例。
在下文中一共展示了util.remove_sentence_boundaries方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_remove_sentence_boundaries
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_remove_sentence_boundaries(self):
tensor = torch.from_numpy(numpy.random.rand(3, 5, 7))
mask = torch.from_numpy(
# The mask with two elements is to test the corner case
# of an empty sequence, so here we are removing boundaries
# from "<S> </S>"
numpy.array([[1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 0]])
).bool()
new_tensor, new_mask = util.remove_sentence_boundaries(tensor, mask)
expected_new_tensor = torch.zeros(3, 3, 7)
expected_new_tensor[1, 0:3, :] = tensor[1, 1:4, :]
expected_new_tensor[2, 0:2, :] = tensor[2, 1:3, :]
assert_array_almost_equal(new_tensor.data.numpy(), expected_new_tensor.data.numpy())
expected_new_mask = torch.from_numpy(numpy.array([[0, 0, 0], [1, 1, 1], [1, 1, 0]])).bool()
assert (new_mask.data.numpy() == expected_new_mask.data.numpy()).all()
示例2: test_remove_sentence_boundaries
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_remove_sentence_boundaries(self):
tensor = torch.from_numpy(numpy.random.rand(3, 5, 7))
mask = torch.from_numpy(
# The mask with two elements is to test the corner case
# of an empty sequence, so here we are removing boundaries
# from "<S> </S>"
numpy.array([[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 0]])).long()
new_tensor, new_mask = util.remove_sentence_boundaries(tensor, mask)
expected_new_tensor = torch.zeros(3, 3, 7)
expected_new_tensor[1, 0:3, :] = tensor[1, 1:4, :]
expected_new_tensor[2, 0:2, :] = tensor[2, 1:3, :]
assert_array_almost_equal(new_tensor.data.numpy(), expected_new_tensor.data.numpy())
expected_new_mask = torch.from_numpy(
numpy.array([[0, 0, 0],
[1, 1, 1],
[1, 1, 0]])).long()
assert (new_mask.data.numpy() == expected_new_mask.data.numpy()).all()
示例3: test_elmo_token_representation
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_elmo_token_representation(self):
# Load the test words and convert to char ids
with open(os.path.join(self.elmo_fixtures_path, "vocab_test.txt"), "r") as fin:
words = fin.read().strip().split("\n")
vocab = Vocabulary()
indexer = ELMoTokenCharactersIndexer()
tokens = [Token(word) for word in words]
indices = indexer.tokens_to_indices(tokens, vocab)
# There are 457 tokens. Reshape into 10 batches of 50 tokens.
sentences = []
for k in range(10):
char_indices = indices["elmo_tokens"][(k * 50) : ((k + 1) * 50)]
sentences.append(
indexer.as_padded_tensor_dict(
{"elmo_tokens": char_indices}, padding_lengths={"elmo_tokens": 50}
)["elmo_tokens"]
)
batch = torch.stack(sentences)
elmo_token_embedder = _ElmoCharacterEncoder(self.options_file, self.weight_file)
elmo_token_embedder_output = elmo_token_embedder(batch)
# Reshape back to a list of words and compare with ground truth. Need to also
# remove <S>, </S>
actual_embeddings = remove_sentence_boundaries(
elmo_token_embedder_output["token_embedding"], elmo_token_embedder_output["mask"]
)[0].data.numpy()
actual_embeddings = actual_embeddings.reshape(-1, actual_embeddings.shape[-1])
embedding_file = os.path.join(self.elmo_fixtures_path, "elmo_token_embeddings.hdf5")
with h5py.File(embedding_file, "r") as fin:
expected_embeddings = fin["embedding"][...]
assert numpy.allclose(actual_embeddings[: len(tokens)], expected_embeddings, atol=1e-6)
示例4: batch_to_embeddings
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def batch_to_embeddings(self, batch ) :
u"""
Parameters
----------
batch : ``List[List[str]]``, required
A list of tokenized sentences.
Returns
-------
A tuple of tensors, the first representing activations (batch_size, 3, num_timesteps, 1024) and
the second a mask (batch_size, num_timesteps).
"""
character_ids = batch_to_ids(batch)
if self.cuda_device >= 0:
character_ids = character_ids.cuda(device=self.cuda_device)
bilm_output = self.elmo_bilm(character_ids)
layer_activations = bilm_output[u'activations']
mask_with_bos_eos = bilm_output[u'mask']
# without_bos_eos is a 3 element list of (activation, mask) tensor pairs,
# each with size (batch_size, num_timesteps, dim and (batch_size, num_timesteps)
# respectively.
without_bos_eos = [remove_sentence_boundaries(layer, mask_with_bos_eos)
for layer in layer_activations]
# Converts a list of pairs (activation, mask) tensors to a single tensor of activations.
activations = torch.cat([ele[0].unsqueeze(1) for ele in without_bos_eos], dim=1)
# The mask is the same for each ELMo vector, so just take the first.
mask = without_bos_eos[0][1]
return activations, mask
示例5: test_elmo_token_representation
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_elmo_token_representation(self):
# Load the test words and convert to char ids
with open(os.path.join(self.elmo_fixtures_path, u'vocab_test.txt'), u'r') as fin:
words = fin.read().strip().split(u'\n')
vocab = Vocabulary()
indexer = ELMoTokenCharactersIndexer()
tokens = [Token(word) for word in words]
indices = indexer.tokens_to_indices(tokens, vocab, u"elmo")
# There are 457 tokens. Reshape into 10 batches of 50 tokens.
sentences = []
for k in range(10):
char_indices = indices[u"elmo"][(k * 50):((k + 1) * 50)]
sentences.append(
indexer.pad_token_sequence(
{u'key': char_indices}, desired_num_tokens={u'key': 50}, padding_lengths={}
)[u'key']
)
batch = torch.from_numpy(numpy.array(sentences))
elmo_token_embedder = _ElmoCharacterEncoder(self.options_file, self.weight_file)
elmo_token_embedder_output = elmo_token_embedder(batch)
# Reshape back to a list of words and compare with ground truth. Need to also
# remove <S>, </S>
actual_embeddings = remove_sentence_boundaries(
elmo_token_embedder_output[u'token_embedding'],
elmo_token_embedder_output[u'mask']
)[0].data.numpy()
actual_embeddings = actual_embeddings.reshape(-1, actual_embeddings.shape[-1])
embedding_file = os.path.join(self.elmo_fixtures_path, u'elmo_token_embeddings.hdf5')
with h5py.File(embedding_file, u'r') as fin:
expected_embeddings = fin[u'embedding'][...]
assert numpy.allclose(actual_embeddings[:len(tokens)], expected_embeddings, atol=1e-6)
示例6: test_elmo_bilm
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_elmo_bilm(self):
# get the raw data
sentences, expected_lm_embeddings = self._load_sentences_embeddings()
# load the test model
elmo_bilm = _ElmoBiLm(self.options_file, self.weight_file)
# Deal with the data.
indexer = ELMoTokenCharactersIndexer()
# For each sentence, first create a TextField, then create an instance
instances = []
for batch in zip(*sentences):
for sentence in batch:
tokens = [Token(token) for token in sentence.split()]
field = TextField(tokens, {"character_ids": indexer})
instance = Instance({"elmo": field})
instances.append(instance)
vocab = Vocabulary()
dataset = AllennlpDataset(instances, vocab)
# Now finally we can iterate through batches.
loader = PyTorchDataLoader(dataset, 3)
for i, batch in enumerate(loader):
lm_embeddings = elmo_bilm(batch["elmo"]["character_ids"]["elmo_tokens"])
top_layer_embeddings, mask = remove_sentence_boundaries(
lm_embeddings["activations"][2], lm_embeddings["mask"]
)
# check the mask lengths
lengths = mask.data.numpy().sum(axis=1)
batch_sentences = [sentences[k][i] for k in range(3)]
expected_lengths = [len(sentence.split()) for sentence in batch_sentences]
assert lengths.tolist() == expected_lengths
# get the expected embeddings and compare!
expected_top_layer = [expected_lm_embeddings[k][i] for k in range(3)]
for k in range(3):
assert numpy.allclose(
top_layer_embeddings[k, : lengths[k], :].data.numpy(),
expected_top_layer[k],
atol=1.0e-6,
)
示例7: create_cached_cnn_embeddings
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def create_cached_cnn_embeddings(self, tokens ) :
u"""
Given a list of tokens, this method precomputes word representations
by running just the character convolutions and highway layers of elmo,
essentially creating uncontextual word vectors. On subsequent forward passes,
the word ids are looked up from an embedding, rather than being computed on
the fly via the CNN encoder.
This function sets 3 attributes:
_word_embedding : ``torch.Tensor``
The word embedding for each word in the tokens passed to this method.
_bos_embedding : ``torch.Tensor``
The embedding for the BOS token.
_eos_embedding : ``torch.Tensor``
The embedding for the EOS token.
Parameters
----------
tokens : ``List[str]``, required.
A list of tokens to precompute character convolutions for.
"""
tokens = [ELMoCharacterMapper.bos_token, ELMoCharacterMapper.eos_token] + tokens
timesteps = 32
batch_size = 32
chunked_tokens = lazy_groups_of(iter(tokens), timesteps)
all_embeddings = []
device = get_device_of(next(self.parameters()))
for batch in lazy_groups_of(chunked_tokens, batch_size):
# Shape (batch_size, timesteps, 50)
batched_tensor = batch_to_ids(batch)
# NOTE: This device check is for when a user calls this method having
# already placed the model on a device. If this is called in the
# constructor, it will probably happen on the CPU. This isn't too bad,
# because it's only a few convolutions and will likely be very fast.
if device >= 0:
batched_tensor = batched_tensor.cuda(device)
output = self._token_embedder(batched_tensor)
token_embedding = output[u"token_embedding"]
mask = output[u"mask"]
token_embedding, _ = remove_sentence_boundaries(token_embedding, mask)
all_embeddings.append(token_embedding.view(-1, token_embedding.size(-1)))
full_embedding = torch.cat(all_embeddings, 0)
# We might have some trailing embeddings from padding in the batch, so
# we clip the embedding and lookup to the right size.
full_embedding = full_embedding[:len(tokens), :]
embedding = full_embedding[2:len(tokens), :]
vocab_size, embedding_dim = list(embedding.size())
from allennlp.modules.token_embedders import Embedding # type: ignore
self._bos_embedding = full_embedding[0, :]
self._eos_embedding = full_embedding[1, :]
self._word_embedding = Embedding(vocab_size, # type: ignore
embedding_dim,
weight=embedding.data,
trainable=self._requires_grad,
padding_index=0)
示例8: test_elmo_bilm
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def test_elmo_bilm(self):
# get the raw data
sentences, expected_lm_embeddings = self._load_sentences_embeddings()
# load the test model
elmo_bilm = _ElmoBiLm(self.options_file, self.weight_file)
# Deal with the data.
indexer = ELMoTokenCharactersIndexer()
# For each sentence, first create a TextField, then create an instance
instances = []
for batch in izip(*sentences):
for sentence in batch:
tokens = [Token(token) for token in sentence.split()]
field = TextField(tokens, {u'character_ids': indexer})
instance = Instance({u"elmo": field})
instances.append(instance)
vocab = Vocabulary()
# Now finally we can iterate through batches.
iterator = BasicIterator(3)
iterator.index_with(vocab)
for i, batch in enumerate(iterator(instances, num_epochs=1, shuffle=False)):
lm_embeddings = elmo_bilm(batch[u'elmo'][u'character_ids'])
top_layer_embeddings, mask = remove_sentence_boundaries(
lm_embeddings[u'activations'][2],
lm_embeddings[u'mask']
)
# check the mask lengths
lengths = mask.data.numpy().sum(axis=1)
batch_sentences = [sentences[k][i] for k in range(3)]
expected_lengths = [
len(sentence.split()) for sentence in batch_sentences
]
self.assertEqual(lengths.tolist(), expected_lengths)
# get the expected embeddings and compare!
expected_top_layer = [expected_lm_embeddings[k][i] for k in range(3)]
for k in range(3):
self.assertTrue(
numpy.allclose(
top_layer_embeddings[k, :lengths[k], :].data.numpy(),
expected_top_layer[k],
atol=1.0e-6
)
)
示例9: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import remove_sentence_boundaries [as 别名]
def forward(self, inputs):
"""
Parameters
----------
inputs: ``torch.Tensor``, required.
Shape ``(batch_size, timesteps, 50)`` of character ids representing the current batch.
word_inputs : ``torch.Tensor``, required.
If you passed a cached vocab, you can in addition pass a tensor of shape
``(batch_size, timesteps)``, which represent word ids which have been pre-cached.
Returns
-------
Dict with keys:
"""
# reshape the input if needed
original_shape = inputs.size()
if len(original_shape) > 3:
timesteps, num_characters = original_shape[-2:]
reshaped_inputs = inputs.view(-1, timesteps, num_characters)
else:
reshaped_inputs = inputs
# run the biLM
bilm_output = self._elmo_lstm(reshaped_inputs, None)
layer_activations = bilm_output['activations']
mask_with_bos_eos = bilm_output['mask']
word_embedding_and_hiddens = torch.cat(layer_activations, dim=-1)
assert self.output_dim * len(layer_activations) == word_embedding_and_hiddens.size(-1)
# compute the elmo representations
representation_with_bos_eos = word_embedding_and_hiddens
representation_without_bos_eos, mask_without_bos_eos = remove_sentence_boundaries(representation_with_bos_eos, mask_with_bos_eos)
processed_representation = representation_without_bos_eos
processed_mask = mask_without_bos_eos
# reshape if necessary
out_representations = []
out_representations.append(processed_representation[:, :, :self.output_dim])
if len(layer_activations) > 1:
for i in range(1, len(layer_activations)):
out_representations.append(processed_representation[:, :, self.output_dim * i : self.output_dim * (i + 1)])
return {'elmo_representations': out_representations, 'mask': processed_mask}
开发者ID:sz128,项目名称:slot_filling_and_intent_detection_of_SLU,代码行数:45,代码来源:get_ELMo_word_embedding_for_a_dataset.py