本文整理汇总了Python中allennlp.nn.util.masked_log_softmax方法的典型用法代码示例。如果您正苦于以下问题:Python util.masked_log_softmax方法的具体用法?Python util.masked_log_softmax怎么用?Python util.masked_log_softmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.nn.util
的用法示例。
在下文中一共展示了util.masked_log_softmax方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_next_state_info_without_agenda
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def _get_next_state_info_without_agenda(state ,
considered_actions ,
action_logits ,
action_mask ):
u"""
We return a list of log probabilities corresponding to actions that are not padding. This
method is related to the training scenario where we have target action sequences for
training.
"""
considered_action_logprobs = nn_util.masked_log_softmax(action_logits, action_mask)
all_action_logprobs = []
for group_index, (score, considered_logprobs) in enumerate(izip(state.score,
considered_action_logprobs)):
instance_action_logprobs = []
for action_index, logprob in enumerate(considered_logprobs):
# This is the actual index of the action from the original list of actions.
action = considered_actions[group_index][action_index]
if action == -1:
# Ignoring padding.
continue
instance_action_logprobs.append((action_index, score + logprob))
all_action_logprobs.append(instance_action_logprobs)
return all_action_logprobs
示例2: test_masked_log_softmax_masked
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def test_masked_log_softmax_masked(self):
# Tests replicated from test_softmax_masked - we test that exponentiated,
# the log softmax contains the correct elements (masked elements should be == 1).
# Testing the general masked 1D case.
vector_1d = torch.FloatTensor([[1.0, 2.0, 5.0]])
mask_1d = torch.tensor([[True, False, True]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(
numpy.exp(vector_1d_softmaxed), numpy.array([[0.01798621, 0.0, 0.98201382]])
)
vector_1d = torch.FloatTensor([[0.0, 2.0, 3.0, 4.0]])
mask_1d = torch.tensor([[True, False, True, True]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(
numpy.exp(vector_1d_softmaxed), numpy.array([[0.01321289, 0.0, 0.26538793, 0.72139918]])
)
# Testing the masked 1D case where the input is all 0s and the mask
# is not all 0s.
vector_1d = torch.FloatTensor([[0.0, 0.0, 0.0, 0.0]])
mask_1d = torch.tensor([[False, False, False, True]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(
numpy.exp(vector_1d_softmaxed), numpy.array([[0.0, 0.0, 0.0, 1.0]])
)
# Testing the masked 1D case where the input is not all 0s
# and the mask is all 0s. The output here will be arbitrary, but it should not be nan.
vector_1d = torch.FloatTensor([[0.0, 2.0, 3.0, 4.0]])
mask_1d = torch.tensor([[False, False, False, False]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert not numpy.isnan(vector_1d_softmaxed).any()
示例3: test_masked_log_softmax_masked
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def test_masked_log_softmax_masked(self):
# Tests replicated from test_softmax_masked - we test that exponentiated,
# the log softmax contains the correct elements (masked elements should be == 1).
# Testing the general masked 1D case.
vector_1d = torch.FloatTensor([[1.0, 2.0, 5.0]])
mask_1d = torch.FloatTensor([[1.0, 0.0, 1.0]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(numpy.exp(vector_1d_softmaxed),
numpy.array([[0.01798621, 0.0, 0.98201382]]))
vector_1d = torch.FloatTensor([[0.0, 2.0, 3.0, 4.0]])
mask_1d = torch.FloatTensor([[1.0, 0.0, 1.0, 1.0]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(numpy.exp(vector_1d_softmaxed),
numpy.array([[0.01321289, 0.0,
0.26538793, 0.72139918]]))
# Testing the masked 1D case where the input is all 0s and the mask
# is not all 0s.
vector_1d = torch.FloatTensor([[0.0, 0.0, 0.0, 0.0]])
mask_1d = torch.FloatTensor([[0.0, 0.0, 0.0, 1.0]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert_array_almost_equal(numpy.exp(vector_1d_softmaxed),
numpy.array([[0., 0., 0., 1.]]))
# Testing the masked 1D case where the input is not all 0s
# and the mask is all 0s. The output here will be arbitrary, but it should not be nan.
vector_1d = torch.FloatTensor([[0.0, 2.0, 3.0, 4.0]])
mask_1d = torch.FloatTensor([[0.0, 0.0, 0.0, 0.0]])
vector_1d_softmaxed = util.masked_log_softmax(vector_1d, mask_1d).data.numpy()
assert not numpy.isnan(vector_1d_softmaxed).any()
示例4: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def forward(self, input_ids, token_type_ids=None, attention_mask=None,
gt_span=None, mode=ForwardMode.TRAIN):
sequence_output, _ = self.bert_encoder(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False)
joint_length = allen_util.get_lengths_from_binary_sequence_mask(attention_mask)
joint_seq_logits = self.qa_outputs(sequence_output)
# The following line is from AllenNLP bidaf.
start_logits = allen_util.replace_masked_values(joint_seq_logits[:, :, 0], attention_mask, -1e18)
# B, T, 2
end_logits = allen_util.replace_masked_values(joint_seq_logits[:, :, 1], attention_mask, -1e18)
if mode == BertSpan.ForwardMode.TRAIN:
assert gt_span is not None
gt_start = gt_span[:, 0] # gt_span: [B, 2] -> [B]
gt_end = gt_span[:, 1]
start_loss = nll_loss(allen_util.masked_log_softmax(start_logits, attention_mask), gt_start)
end_loss = nll_loss(allen_util.masked_log_softmax(end_logits, attention_mask), gt_end)
# We delete squeeze bc it will cause problem when the batch size is 1, and remember the gt_start and gt_end should have shape [B].
# start_loss = nll_loss(allen_util.masked_log_softmax(start_logits, context_mask), gt_start.squeeze(-1))
# end_loss = nll_loss(allen_util.masked_log_softmax(end_logits, context_mask), gt_end.squeeze(-1))
loss = start_loss + end_loss
return loss
else:
return start_logits, end_logits, joint_length
示例5: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def forward(self, input_ids, token_type_ids=None, attention_mask=None, context_span=None,
gt_span=None, max_context_length=0, mode=ForwardMode.TRAIN):
# Precomputing of the max_context_length is important
# because we want the same value to be shared to different GPUs, dynamic calculating is not feasible.
sequence_output, _ = self.bert_encoder(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False)
joint_seq_logits = self.qa_outputs(sequence_output)
context_logits, context_length = span_util.span_select(joint_seq_logits, context_span, max_context_length)
context_mask = allen_util.get_mask_from_sequence_lengths(context_length, max_context_length)
# The following line is from AllenNLP bidaf.
start_logits = allen_util.replace_masked_values(context_logits[:, :, 0], context_mask, -1e18)
# B, T, 2
end_logits = allen_util.replace_masked_values(context_logits[:, :, 1], context_mask, -1e18)
if mode == BertSpan.ForwardMode.TRAIN:
assert gt_span is not None
gt_start = gt_span[:, 0] # gt_span: [B, 2]
gt_end = gt_span[:, 1]
start_loss = nll_loss(allen_util.masked_log_softmax(start_logits, context_mask), gt_start.squeeze(-1))
end_loss = nll_loss(allen_util.masked_log_softmax(end_logits, context_mask), gt_end.squeeze(-1))
loss = start_loss + end_loss
return loss
else:
return start_logits, end_logits, context_length
示例6: forward
# 需要导入模块: from allennlp.nn import util [as 别名]
# 或者: from allennlp.nn.util import masked_log_softmax [as 别名]
def forward(self,
frames: torch.FloatTensor,
frame_lens: torch.LongTensor):
"""
frames: (batch_size, seq_len, num_lmks, lmk_dim)
frame_lens: (batch_size, )
"""
if self.frame_processing == 'flatten':
frames = frames.reshape(frames.shape[0], frames.shape[1], -1)
# Reverse sorts the batch by unpadded seq_len.
(sorted_frames, sorted_frame_lens,
restoration_indices, _) = sort_batch_by_length(frames, frame_lens)
# Returns a PackedSequence.
packed_frames = nn.utils.rnn.pack_padded_sequence(sorted_frames,
sorted_frame_lens.data.cpu().numpy() if sorted_frame_lens.is_cuda else sorted_frame_lens.data.numpy(),
batch_first=True)
# Encoder: feed frames to the model, output hidden states.
# final_state: (num_layers * num_dir, batch_size, hidden_size) (*2 if LSTM)
packed_hidden_states, final_state = self.rnn(packed_frames)
# Unpack encoding, the hidden states, a Tensor.
# (batch_size, seq_len, num_dir * hidden_size)
hidden_states, _ = nn.utils.rnn.pad_packed_sequence(packed_hidden_states, batch_first=True)
# (num_layers, batch_size, hidden_size * num_dir) (*2 if LSTM)
if self.bidirectional:
final_state = self._cat_directions(final_state)
hidden_states = hidden_states.index_select(0, restoration_indices)
if isinstance(final_state, tuple): # LSTM
final_state = (final_state[0].index_select(1, restoration_indices),
final_state[1].index_select(1, restoration_indices))
else:
final_state = final_state.index_select(1, restoration_indices)
if self.enable_ctc:
output_logits = self.output_proj(hidden_states)
output_log_probs = masked_log_softmax(output_logits, self.output_mask.expand(output_logits.shape[0], self.adj_vocab_size), dim=-1)
return output_log_probs, hidden_states, final_state
else:
return hidden_states, final_state