本文整理汇总了Python中allennlp.nn.InitializerApplicator方法的典型用法代码示例。如果您正苦于以下问题:Python nn.InitializerApplicator方法的具体用法?Python nn.InitializerApplicator怎么用?Python nn.InitializerApplicator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.nn
的用法示例。
在下文中一共展示了nn.InitializerApplicator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
verbose_metrics: bool = False,
dropout: float = 0.2,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.dropout = torch.nn.Dropout(dropout)
self.num_classes = self.vocab.get_vocab_size("labels")
self.classifier_feedforward = torch.nn.Linear(self.text_field_embedder.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例2: test_forward_gives_correct_output
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_forward_gives_correct_output(self):
params = Params(
{"input_dim": 2, "output_dims": 3, "pool_sizes": 4, "dropout": 0.0, "num_layers": 2}
)
maxout = Maxout.from_params(params)
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(maxout)
input_tensor = torch.FloatTensor([[-3, 1]])
output = maxout(input_tensor).data.numpy()
assert output.shape == (1, 3)
# This output was checked by hand
# The output of the first maxout layer is [-1, -1, -1], since the
# matrix multiply gives us [-2]*12. Reshaping and maxing
# produces [-2, -2, -2] and the bias increments these values.
# The second layer output is [-2, -2, -2], since the matrix
# matrix multiply gives us [-3]*12. Reshaping and maxing
# produces [-3, -3, -3] and the bias increments these values.
assert_almost_equal(output, [[-2, -2, -2]])
示例3: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab ,
text_field_embedder ,
encoder ,
initializer = InitializerApplicator(),
regularizer = None) :
super(SimpleTagger, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(u"labels")
self.encoder = encoder
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
u"text field embedding dim", u"encoder input dim")
self.metrics = {
u"accuracy": CategoricalAccuracy(),
u"accuracy3": CategoricalAccuracy(top_k=3)
}
initializer(self)
#overrides
示例4: test_forward_gives_correct_output
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_forward_gives_correct_output(self):
params = Params({
u'input_dim': 2,
u'output_dims': 3,
u'pool_sizes': 4,
u'dropout': 0.0,
u'num_layers': 2
})
maxout = Maxout.from_params(params)
constant_init = lambda tensor: torch.nn.init.constant_(tensor, 1.)
initializer = InitializerApplicator([(u".*", constant_init)])
initializer(maxout)
input_tensor = torch.FloatTensor([[-3, 1]])
output = maxout(input_tensor).data.numpy()
assert output.shape == (1, 3)
# This output was checked by hand
# The output of the first maxout layer is [-1, -1, -1], since the
# matrix multiply gives us [-2]*12. Reshaping and maxing
# produces [-2, -2, -2] and the bias increments these values.
# The second layer output is [-2, -2, -2], since the matrix
# matrix multiply gives us [-3]*12. Reshaping and maxing
# produces [-3, -3, -3] and the bias increments these values.
assert_almost_equal(output, [[-2, -2, -2]])
示例5: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab: Vocabulary,
input_dim: int,
num_classes: int,
label_namespace: str = "labels",
feedforward: Optional[FeedForward] = None,
dropout: Optional[float] = None,
verbose_metrics: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.input_dim = input_dim
self.num_classes = num_classes
self._verbose_metrics = verbose_metrics
if dropout:
self.dropout = torch.nn.Dropout(dropout)
else:
self.dropout = None
self._feedforward = feedforward
if self._feedforward is not None:
self.projection_layer = Linear(feedforward.get_output_dim(), self.num_classes)
else:
self.projection_layer = Linear(self.input_dim, self.num_classes)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3),
"accuracy5": CategoricalAccuracy(top_k=5)
}
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例6: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
text_encoder: Seq2SeqEncoder,
classifier_feedforward: FeedForward,
verbose_metrics: False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size("labels")
self.text_encoder = text_encoder
self.classifier_feedforward = classifier_feedforward
self.prediction_layer = torch.nn.Linear(self.classifier_feedforward.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
self.pool = lambda text, mask: util.get_final_encoder_states(text, mask, bidirectional=True)
initializer(self)
示例7: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
include_start_end_transitions: bool = True,
dropout: Optional[float] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = 'labels'
self.num_tags = self.vocab.get_vocab_size(self.label_namespace)
# encode text
self.text_field_embedder = text_field_embedder
self.encoder = encoder
self.dropout = torch.nn.Dropout(dropout) if dropout else None
# crf
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags))
self.crf = ConditionalRandomField(self.num_tags, constraints=None, include_start_end_transitions=include_start_end_transitions)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
for index, label in self.vocab.get_index_to_token_vocabulary(self.label_namespace).items():
self.metrics['F1_' + label] = F1Measure(positive_label=index)
initializer(self)
示例8: __init__
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
predictor_dropout=0.0,
labels_namespace: str = "labels",
detect_namespace: str = "d_tags",
verbose_metrics: bool = False,
label_smoothing: float = 0.0,
confidence: float = 0.0,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(Seq2Labels, self).__init__(vocab, regularizer)
self.label_namespaces = [labels_namespace,
detect_namespace]
self.text_field_embedder = text_field_embedder
self.num_labels_classes = self.vocab.get_vocab_size(labels_namespace)
self.num_detect_classes = self.vocab.get_vocab_size(detect_namespace)
self.label_smoothing = label_smoothing
self.confidence = confidence
self.incorr_index = self.vocab.get_token_index("INCORRECT",
namespace=detect_namespace)
self._verbose_metrics = verbose_metrics
self.predictor_dropout = TimeDistributed(torch.nn.Dropout(predictor_dropout))
self.tag_labels_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_labels_classes))
self.tag_detect_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_detect_classes))
self.metrics = {"accuracy": CategoricalAccuracy()}
initializer(self)
示例9: test_augmented_lstm_computes_same_function_as_pytorch_lstm
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_augmented_lstm_computes_same_function_as_pytorch_lstm(self):
augmented_lstm = AugmentedLstm(10, 11)
pytorch_lstm = LSTM(10, 11, num_layers=1, batch_first=True)
# Initialize all weights to be == 1.
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(augmented_lstm)
initializer(pytorch_lstm)
initial_state = torch.zeros([1, 5, 11])
initial_memory = torch.zeros([1, 5, 11])
# Use bigger numbers to avoid floating point instability.
sorted_tensor, sorted_sequence, _, _ = sort_batch_by_length(
self.random_tensor * 5.0, self.sequence_lengths
)
lstm_input = pack_padded_sequence(
sorted_tensor, sorted_sequence.data.tolist(), batch_first=True
)
augmented_output, augmented_state = augmented_lstm(
lstm_input, (initial_state, initial_memory)
)
pytorch_output, pytorch_state = pytorch_lstm(lstm_input, (initial_state, initial_memory))
pytorch_output_sequence, _ = pad_packed_sequence(pytorch_output, batch_first=True)
augmented_output_sequence, _ = pad_packed_sequence(augmented_output, batch_first=True)
numpy.testing.assert_array_almost_equal(
pytorch_output_sequence.data.numpy(), augmented_output_sequence.data.numpy(), decimal=4
)
numpy.testing.assert_array_almost_equal(
pytorch_state[0].data.numpy(), augmented_state[0].data.numpy(), decimal=4
)
numpy.testing.assert_array_almost_equal(
pytorch_state[1].data.numpy(), augmented_state[1].data.numpy(), decimal=4
)
示例10: test_forward_gives_correct_output
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_forward_gives_correct_output(self):
params = Params({"input_dim": 2, "hidden_dims": 3, "activations": "relu", "num_layers": 2})
feedforward = FeedForward.from_params(params)
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(feedforward)
input_tensor = torch.FloatTensor([[-3, 1]])
output = feedforward(input_tensor).data.numpy()
assert output.shape == (1, 3)
# This output was checked by hand - ReLU makes output after first hidden layer [0, 0, 0],
# which then gets a bias added in the second layer to be [1, 1, 1].
assert_almost_equal(output, [[1, 1, 1]])
示例11: setup_method
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def setup_method(self):
super().setup_method()
self.vocab = Vocabulary()
self.vocab.add_token_to_namespace("1", "token_characters")
self.vocab.add_token_to_namespace("2", "token_characters")
self.vocab.add_token_to_namespace("3", "token_characters")
self.vocab.add_token_to_namespace("4", "token_characters")
params = Params(
{
"embedding": {"embedding_dim": 2, "vocab_namespace": "token_characters"},
"encoder": {
"type": "cnn",
"embedding_dim": 2,
"num_filters": 4,
"ngram_filter_sizes": [1, 2],
"output_dim": 3,
},
}
)
self.encoder = TokenCharactersEncoder.from_params(vocab=self.vocab, params=deepcopy(params))
self.embedding = Embedding.from_params(vocab=self.vocab, params=params["embedding"])
self.inner_encoder = Seq2VecEncoder.from_params(params["encoder"])
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(self.encoder)
initializer(self.embedding)
initializer(self.inner_encoder)
示例12: test_forward_does_correct_computation
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_forward_does_correct_computation(self):
encoder = CnnEncoder(embedding_dim=2, num_filters=1, ngram_filter_sizes=(1, 2))
constant_init = Initializer.from_params(Params({"type": "constant", "val": 1.0}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(encoder)
input_tensor = torch.FloatTensor([[[0.7, 0.8], [0.1, 1.5]]])
encoder_output = encoder(input_tensor, None)
assert_almost_equal(
encoder_output.data.numpy(), numpy.asarray([[1.6 + 1.0, 3.1 + 1.0]]), decimal=6
)
示例13: test_l1_regularization
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_l1_regularization(self):
model = torch.nn.Sequential(torch.nn.Linear(5, 10), torch.nn.Linear(10, 5))
constant_init = Initializer.from_params(Params({"type": "constant", "val": -1}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(model)
value = RegularizerApplicator([("", L1Regularizer(1.0))])(model)
# 115 because of biases.
assert value.data.numpy() == 115.0
示例14: test_l2_regularization
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_l2_regularization(self):
model = torch.nn.Sequential(torch.nn.Linear(5, 10), torch.nn.Linear(10, 5))
constant_init = Initializer.from_params(Params({"type": "constant", "val": 0.5}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(model)
value = RegularizerApplicator([("", L2Regularizer(1.0))])(model)
assert value.data.numpy() == 28.75
示例15: test_frozen_params
# 需要导入模块: from allennlp import nn [as 别名]
# 或者: from allennlp.nn import InitializerApplicator [as 别名]
def test_frozen_params(self):
model = torch.nn.Sequential(torch.nn.Linear(5, 10), torch.nn.Linear(10, 5))
constant_init = Initializer.from_params(Params({"type": "constant", "val": -1}))
initializer = InitializerApplicator([(".*", constant_init)])
initializer(model)
# freeze the parameters of the first linear
for name, param in model.named_parameters():
if re.search(r"0.*$", name):
param.requires_grad = False
value = RegularizerApplicator([("", L1Regularizer(1.0))])(model)
# 55 because of bias (5*10 + 5)
assert value.data.numpy() == 55