本文整理汇总了Python中allennlp.modules.elmo.Elmo方法的典型用法代码示例。如果您正苦于以下问题:Python elmo.Elmo方法的具体用法?Python elmo.Elmo怎么用?Python elmo.Elmo使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.modules.elmo
的用法示例。
在下文中一共展示了elmo.Elmo方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_elmo
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def test_elmo(self):
# Correctness checks are in ElmoBiLm and ScalarMix, here we just add a shallow test
# to ensure things execute.
sentences = [
["The", "sentence", "."],
["ELMo", "helps", "disambiguate", "ELMo", "from", "Elmo", "."],
]
character_ids = self._sentences_to_ids(sentences)
output = self.elmo(character_ids)
elmo_representations = output["elmo_representations"]
mask = output["mask"]
assert len(elmo_representations) == 2
assert list(elmo_representations[0].size()) == [2, 7, 32]
assert list(elmo_representations[1].size()) == [2, 7, 32]
assert list(mask.size()) == [2, 7]
示例2: test_elmo_keep_sentence_boundaries
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def test_elmo_keep_sentence_boundaries(self):
sentences = [
["The", "sentence", "."],
["ELMo", "helps", "disambiguate", "ELMo", "from", "Elmo", "."],
]
elmo = Elmo(
self.options_file, self.weight_file, 2, dropout=0.0, keep_sentence_boundaries=True
)
character_ids = self._sentences_to_ids(sentences)
output = elmo(character_ids)
elmo_representations = output["elmo_representations"]
mask = output["mask"]
assert len(elmo_representations) == 2
# Add 2 to the lengths because we're keeping the start and end of sentence tokens.
assert list(elmo_representations[0].size()) == [2, 7 + 2, 32]
assert list(elmo_representations[1].size()) == [2, 7 + 2, 32]
assert list(mask.size()) == [2, 7 + 2]
示例3: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(self,
options_file ,
weight_file ,
do_layer_norm = False,
dropout = 0.5,
requires_grad = False,
projection_dim = None,
vocab_to_cache = None) :
super(ElmoTokenEmbedder, self).__init__()
self._elmo = Elmo(options_file,
weight_file,
1,
do_layer_norm=do_layer_norm,
dropout=dropout,
requires_grad=requires_grad,
vocab_to_cache=vocab_to_cache)
if projection_dim:
self._projection = torch.nn.Linear(self._elmo.get_output_dim(), projection_dim)
else:
self._projection = None
示例4: test_elmo_4D_input
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def test_elmo_4D_input(self):
sentences = [[[u'The', u'sentence', u'.'],
[u'ELMo', u'helps', u'disambiguate', u'ELMo', u'from', u'Elmo', u'.']],
[[u'1', u'2'], [u'1', u'2', u'3', u'4', u'5', u'6', u'7']],
[[u'1', u'2', u'3', u'4', u'50', u'60', u'70'], [u'The']]]
all_character_ids = []
for batch_sentences in sentences:
all_character_ids.append(self._sentences_to_ids(batch_sentences))
# (2, 3, 7, 50)
character_ids = torch.cat([ids.unsqueeze(1) for ids in all_character_ids], dim=1)
embeddings_4d = self.elmo(character_ids)
# Run the individual batches.
embeddings_3d = []
for char_ids in all_character_ids:
self.elmo._elmo_lstm._elmo_lstm.reset_states()
embeddings_3d.append(self.elmo(char_ids))
for k in range(3):
numpy.testing.assert_array_almost_equal(
embeddings_4d[u'elmo_representations'][0][:, k, :, :].data.numpy(),
embeddings_3d[k][u'elmo_representations'][0].data.numpy()
)
示例5: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(self, char_table, conf):
super(ElmoLayer, self).__init__()
self.conf = conf
lookup, length = char_table
self.lookup = nn.Embedding(lookup.size(0), lookup.size(1))
self.lookup.weight.data.copy_(lookup)
self.lookup.weight.requires_grad = False
self.elmo = Elmo(
os.path.expanduser(self.conf.elmo_options), os.path.expanduser(self.conf.elmo_weights),
num_output_representations=2, do_layer_norm=False, dropout=self.conf.embed_dropout
)
for p in self.elmo.parameters():
p.requires_grad = False
self.w = nn.Parameter(torch.Tensor([0.5, 0.5]))
self.gamma = nn.Parameter(torch.ones(1))
self.conv = nn.Conv1d(1024, self.conf.elmo_dim, 1)
nn.init.xavier_uniform(self.conv.weight)
self.conv.bias.data.fill_(0)
示例6: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(self, n_classes, dropout=.5):
super().__init__()
self.dropout = dropout
# This turns off gradient updates for the elmo model, but still leaves scalar mixture
# parameters as tunable, provided that references to the scalar mixtures are extracted
# and plugged into the optimizer
self.elmo = Elmo(ELMO_OPTIONS_FILE, ELMO_WEIGHTS_FILE, 2, dropout=dropout, requires_grad=False)
self.classifier = nn.Sequential(
nn.Linear(2 * ELMO_DIM, n_classes),
nn.BatchNorm1d(n_classes),
nn.Dropout(dropout)
)
示例7: get_elmo_class
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def get_elmo_class():
# Avoid a hard dependency by only importing Elmo if it's being used
from allennlp.modules.elmo import Elmo
return Elmo
# %%
示例8: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(self, hps):
super(ELMoEndoer, self).__init__()
self._hps = hps
self.sent_max_len = hps.sent_max_len
from allennlp.modules.elmo import Elmo
elmo_dim = 1024
options_file = "/remote-home/dqwang/ELMo/elmo_2x4096_512_2048cnn_2xhighway_5.5B_options.json"
weight_file = "/remote-home/dqwang/ELMo/elmo_2x4096_512_2048cnn_2xhighway_5.5B_weights.hdf5"
# elmo_dim = 512
# options_file = "/remote-home/dqwang/ELMo/elmo_2x2048_256_2048cnn_1xhighway_options.json"
# weight_file = "/remote-home/dqwang/ELMo/elmo_2x2048_256_2048cnn_1xhighway_weights.hdf5"
embed_size = hps.word_emb_dim
sent_max_len = hps.sent_max_len
input_channels = 1
out_channels = hps.output_channel
min_kernel_size = hps.min_kernel_size
max_kernel_size = hps.max_kernel_size
width = embed_size
# elmo embedding
self.elmo = Elmo(options_file, weight_file, 1, dropout=0)
self.embed_proj = nn.Linear(elmo_dim, embed_size)
# position embedding
self.position_embedding = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(sent_max_len + 1, embed_size, padding_idx=0), freeze=True)
# cnn
self.convs = nn.ModuleList([nn.Conv2d(input_channels, out_channels, kernel_size = (height, width)) for height in range(min_kernel_size, max_kernel_size+1)])
logger.info("[INFO] Initing W for CNN.......")
for conv in self.convs:
init_weight_value = 6.0
init.xavier_normal_(conv.weight.data, gain=np.sqrt(init_weight_value))
fan_in, fan_out = Encoder.calculate_fan_in_and_fan_out(conv.weight.data)
std = np.sqrt(init_weight_value) * np.sqrt(2.0 / (fan_in + fan_out))
示例9: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(
self,
dropout_value: float = 0.5,
datasets_manager: DatasetsManager = None,
word_tokens_namespace: str = "tokens",
device: torch.device = torch.device("cpu"),
fine_tune: bool = False,
):
super(ElmoEmbedder, self).__init__()
# Sometimes you need two different tensors that are
# two different linear combination of representations
# TODO: change this in-case you need 2 representations
self.num_output_representations = 1
self.dropout_value = dropout_value
self.datasets_manager = datasets_manager
self.device = torch.device(device) if isinstance(device, str) else device
self.msg_printer = wasabi.Printer()
self.word_tokens_namespace = word_tokens_namespace
self.fine_tune = fine_tune
self.embedder_name = "ElmoEmbedder"
with self.msg_printer.loading("Loading Elmo Object"):
self.elmo: nn.Module = Elmo(
options_file=ELMO_OPTIONS_FILE,
weight_file=ELMO_WEIGHTS_FILE,
num_output_representations=self.num_output_representations,
dropout=self.dropout_value,
requires_grad=fine_tune,
)
self.msg_printer.good(f"Finished Loading ELMO object")
示例10: __init__
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def __init__(
self,
options_file: str = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096_512_2048cnn_2xhighway/"
+ "elmo_2x4096_512_2048cnn_2xhighway_options.json",
weight_file: str = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096_512_2048cnn_2xhighway/"
+ "elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5",
do_layer_norm: bool = False,
dropout: float = 0.5,
requires_grad: bool = False,
projection_dim: int = None,
vocab_to_cache: List[str] = None,
scalar_mix_parameters: List[float] = None,
) -> None:
super().__init__()
self._elmo = Elmo(
options_file,
weight_file,
1,
do_layer_norm=do_layer_norm,
dropout=dropout,
requires_grad=requires_grad,
vocab_to_cache=vocab_to_cache,
scalar_mix_parameters=scalar_mix_parameters,
)
if projection_dim:
self._projection = torch.nn.Linear(self._elmo.get_output_dim(), projection_dim)
self.output_dim = projection_dim
else:
self._projection = None
self.output_dim = self._elmo.get_output_dim()
示例11: setup_method
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def setup_method(self):
super().setup_method()
self.elmo = Elmo(self.options_file, self.weight_file, 2, dropout=0.0)
示例12: test_elmo_4D_input
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def test_elmo_4D_input(self):
sentences = [
[
["The", "sentence", "."],
["ELMo", "helps", "disambiguate", "ELMo", "from", "Elmo", "."],
],
[["1", "2"], ["1", "2", "3", "4", "5", "6", "7"]],
[["1", "2", "3", "4", "50", "60", "70"], ["The"]],
]
all_character_ids = []
for batch_sentences in sentences:
all_character_ids.append(self._sentences_to_ids(batch_sentences))
# (2, 3, 7, 50)
character_ids = torch.cat([ids.unsqueeze(1) for ids in all_character_ids], dim=1)
embeddings_4d = self.elmo(character_ids)
# Run the individual batches.
embeddings_3d = []
for char_ids in all_character_ids:
self.elmo._elmo_lstm._elmo_lstm.reset_states()
embeddings_3d.append(self.elmo(char_ids))
for k in range(3):
numpy.testing.assert_array_almost_equal(
embeddings_4d["elmo_representations"][0][:, k, :, :].data.numpy(),
embeddings_3d[k]["elmo_representations"][0].data.numpy(),
)
示例13: test_elmo_bilm_can_handle_higher_dimensional_input_with_cache
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def test_elmo_bilm_can_handle_higher_dimensional_input_with_cache(self):
sentences = [["This", "is", "a", "sentence"], ["Here", "'s", "one"], ["Another", "one"]]
vocab, tensor = self.get_vocab_and_both_elmo_indexed_ids(sentences)
words_to_cache = list(vocab.get_token_to_index_vocabulary("tokens").keys())
elmo_bilm = Elmo(self.options_file, self.weight_file, 1, vocab_to_cache=words_to_cache)
elmo_bilm.eval()
individual_dim = elmo_bilm(
tensor["character_ids"]["elmo_tokens"], tensor["tokens"]["tokens"]
)
elmo_bilm = Elmo(self.options_file, self.weight_file, 1, vocab_to_cache=words_to_cache)
elmo_bilm.eval()
expanded_word_ids = torch.stack([tensor["tokens"]["tokens"] for _ in range(4)], dim=1)
expanded_char_ids = torch.stack(
[tensor["character_ids"]["elmo_tokens"] for _ in range(4)], dim=1
)
expanded_result = elmo_bilm(expanded_char_ids, expanded_word_ids)
split_result = [
x.squeeze(1) for x in torch.split(expanded_result["elmo_representations"][0], 1, dim=1)
]
for expanded in split_result:
numpy.testing.assert_array_almost_equal(
expanded.data.cpu().numpy(),
individual_dim["elmo_representations"][0].data.cpu().numpy(),
)
示例14: load_allennlp_elmo
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def load_allennlp_elmo(
options_file: str,
weight_file: str,
) -> Any:
from allennlp.modules.elmo import Elmo
return Elmo(
options_file,
weight_file,
num_output_representations=1,
dropout=0.0,
scalar_mix_parameters=[1.0, 1.0, 1.0],
)
示例15: load_elmo
# 需要导入模块: from allennlp.modules import elmo [as 别名]
# 或者: from allennlp.modules.elmo import Elmo [as 别名]
def load_elmo(self, elmo_options_file, elmo_weights_file):
device = self.word_embedding.embedding.weight.device
from allennlp.modules.elmo import Elmo
self.elmo = Elmo(elmo_options_file, elmo_weights_file, 1, dropout=0).to(device)