本文整理汇总了Python中allennlp.modules.TimeDistributed方法的典型用法代码示例。如果您正苦于以下问题:Python modules.TimeDistributed方法的具体用法?Python modules.TimeDistributed怎么用?Python modules.TimeDistributed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.modules
的用法示例。
在下文中一共展示了modules.TimeDistributed方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_time_distributed_reshapes_multiple_inputs_with_pass_through_non_tensor_correctly
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def test_time_distributed_reshapes_multiple_inputs_with_pass_through_non_tensor_correctly(self):
class FakeModule(Module):
@overrides
def forward(self, input_tensor, number=0, another_tensor=None):
return input_tensor + number + another_tensor
module = FakeModule()
distributed_module = TimeDistributed(module)
input_tensor1 = torch.LongTensor([[[1, 2], [3, 4]]])
input_number = 5
input_tensor2 = torch.LongTensor([[[4, 2], [9, 1]]])
output = distributed_module(
input_tensor1,
number=input_number,
another_tensor=input_tensor2,
pass_through=["number"],
)
assert_almost_equal(output.data.numpy(), [[[10, 9], [17, 10]]])
示例2: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab ,
text_field_embedder ,
encoder ,
initializer = InitializerApplicator(),
regularizer = None) :
super(SimpleTagger, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(u"labels")
self.encoder = encoder
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
u"text field embedding dim", u"encoder input dim")
self.metrics = {
u"accuracy": CategoricalAccuracy(),
u"accuracy3": CategoricalAccuracy(top_k=3)
}
initializer(self)
#overrides
示例3: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
include_start_end_transitions: bool = True,
dropout: Optional[float] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = 'labels'
self.num_tags = self.vocab.get_vocab_size(self.label_namespace)
# encode text
self.text_field_embedder = text_field_embedder
self.encoder = encoder
self.dropout = torch.nn.Dropout(dropout) if dropout else None
# crf
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags))
self.crf = ConditionalRandomField(self.num_tags, constraints=None, include_start_end_transitions=include_start_end_transitions)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
for index, label in self.vocab.get_index_to_token_vocabulary(self.label_namespace).items():
self.metrics['F1_' + label] = F1Measure(positive_label=index)
initializer(self)
示例4: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
label_namespace: str = "labels",
constraint_type: str = None,
include_start_end_transitions: bool = True,
dropout: float = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.text_field_embedder = text_field_embedder
self.num_tags = self.vocab.get_vocab_size(label_namespace)
self.encoder = encoder
if dropout:
self.dropout = torch.nn.Dropout(dropout)
else:
self.dropout = None
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_tags))
if constraint_type is not None:
labels = self.vocab.get_index_to_token_vocabulary(label_namespace)
constraints = allowed_transitions(constraint_type, labels)
else:
constraints = None
self.crf = ConditionalRandomField(
self.num_tags, constraints,
include_start_end_transitions=include_start_end_transitions
)
self.span_metric = SpanBasedF1Measure(vocab,
tag_namespace=label_namespace,
label_encoding=constraint_type or "BIO")
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
"text field embedding dim", "encoder input dim")
initializer(self)
示例5: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
predictor_dropout=0.0,
labels_namespace: str = "labels",
detect_namespace: str = "d_tags",
verbose_metrics: bool = False,
label_smoothing: float = 0.0,
confidence: float = 0.0,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(Seq2Labels, self).__init__(vocab, regularizer)
self.label_namespaces = [labels_namespace,
detect_namespace]
self.text_field_embedder = text_field_embedder
self.num_labels_classes = self.vocab.get_vocab_size(labels_namespace)
self.num_detect_classes = self.vocab.get_vocab_size(detect_namespace)
self.label_smoothing = label_smoothing
self.confidence = confidence
self.incorr_index = self.vocab.get_token_index("INCORRECT",
namespace=detect_namespace)
self._verbose_metrics = verbose_metrics
self.predictor_dropout = TimeDistributed(torch.nn.Dropout(predictor_dropout))
self.tag_labels_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_labels_classes))
self.tag_detect_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_detect_classes))
self.metrics = {"accuracy": CategoricalAccuracy()}
initializer(self)
示例6: forward
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def forward(
self, tokens: torch.Tensor, mask: torch.BoolTensor = None, num_wrapping_dims: int = 0
):
pooler = self.pooler
for _ in range(num_wrapping_dims):
from allennlp.modules import TimeDistributed
pooler = TimeDistributed(pooler)
pooled = pooler(tokens)
pooled = self._dropout(pooled)
return pooled
示例7: test_time_distributed_reshapes_named_arg_correctly
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def test_time_distributed_reshapes_named_arg_correctly(self):
char_embedding = Embedding(2, 2)
char_embedding.weight = Parameter(torch.FloatTensor([[0.4, 0.4], [0.5, 0.5]]))
distributed_embedding = TimeDistributed(char_embedding)
char_input = torch.LongTensor([[[1, 0], [1, 1]]])
output = distributed_embedding(char_input)
assert_almost_equal(
output.data.numpy(), [[[[0.5, 0.5], [0.4, 0.4]], [[0.5, 0.5], [0.5, 0.5]]]]
)
示例8: test_time_distributed_reshapes_positional_kwarg_correctly
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def test_time_distributed_reshapes_positional_kwarg_correctly(self):
char_embedding = Embedding(2, 2)
char_embedding.weight = Parameter(torch.FloatTensor([[0.4, 0.4], [0.5, 0.5]]))
distributed_embedding = TimeDistributed(char_embedding)
char_input = torch.LongTensor([[[1, 0], [1, 1]]])
output = distributed_embedding(input=char_input)
assert_almost_equal(
output.data.numpy(), [[[[0.5, 0.5], [0.4, 0.4]], [[0.5, 0.5], [0.5, 0.5]]]]
)
示例9: test_time_distributed_works_with_multiple_inputs
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def test_time_distributed_works_with_multiple_inputs(self):
module = lambda x, y: x + y
distributed = TimeDistributed(module)
x_input = torch.LongTensor([[[1, 2], [3, 4]]])
y_input = torch.LongTensor([[[4, 2], [9, 1]]])
output = distributed(x_input, y_input)
assert_almost_equal(output.data.numpy(), [[[5, 4], [12, 5]]])
示例10: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab ,
text_field_embedder ,
attend_feedforward ,
similarity_function ,
compare_feedforward ,
aggregate_feedforward ,
premise_encoder = None,
hypothesis_encoder = None,
initializer = InitializerApplicator(),
regularizer = None) :
super(DecomposableAttention, self).__init__(vocab, regularizer)
self._text_field_embedder = text_field_embedder
self._attend_feedforward = TimeDistributed(attend_feedforward)
self._matrix_attention = LegacyMatrixAttention(similarity_function)
self._compare_feedforward = TimeDistributed(compare_feedforward)
self._aggregate_feedforward = aggregate_feedforward
self._premise_encoder = premise_encoder
self._hypothesis_encoder = hypothesis_encoder or premise_encoder
self._num_labels = vocab.get_vocab_size(namespace=u"labels")
check_dimensions_match(text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(),
u"text field embedding dim", u"attend feedforward input dim")
check_dimensions_match(aggregate_feedforward.get_output_dim(), self._num_labels,
u"final output dimension", u"number of labels")
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例11: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab ,
text_field_embedder ,
encoder ,
binary_feature_dim ,
embedding_dropout = 0.0,
initializer = InitializerApplicator(),
regularizer = None,
label_smoothing = None) :
super(SemanticRoleLabeler, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(u"labels")
# For the span based evaluation, we don't want to consider labels
# for verb, because the verb index is provided to the model.
self.span_metric = SpanBasedF1Measure(vocab, tag_namespace=u"labels", ignore_classes=[u"V"])
self.encoder = encoder
# There are exactly 2 binary features for the verb predicate embedding.
self.binary_feature_embedding = Embedding(2, binary_feature_dim)
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
self.embedding_dropout = Dropout(p=embedding_dropout)
self._label_smoothing = label_smoothing
check_dimensions_match(text_field_embedder.get_output_dim() + binary_feature_dim,
encoder.get_input_dim(),
u"text embedding dim + verb indicator embedding dim",
u"encoder input dim")
initializer(self)
示例12: test_time_distributed_reshapes_correctly
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def test_time_distributed_reshapes_correctly(self):
char_embedding = Embedding(2, 2)
char_embedding.weight = Parameter(torch.FloatTensor([[.4, .4], [.5, .5]]))
distributed_embedding = TimeDistributed(char_embedding)
char_input = torch.LongTensor([[[1, 0], [1, 1]]])
output = distributed_embedding(char_input)
assert_almost_equal(output.data.numpy(),
[[[[.5, .5], [.4, .4]], [[.5, .5,], [.5, .5]]]])
示例13: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
seq2seq_encoder: Seq2SeqEncoder,
initializer: InitializerApplicator) -> None:
super(ProLocalModel, self).__init__(vocab)
self.text_field_embedder = text_field_embedder
self.seq2seq_encoder = seq2seq_encoder
self.attention_layer = \
Attention(similarity_function=BilinearSimilarity(2 * seq2seq_encoder.get_output_dim(),
seq2seq_encoder.get_output_dim()), normalize=True)
self.num_types = self.vocab.get_vocab_size("state_change_type_labels")
self.aggregate_feedforward = Linear(seq2seq_encoder.get_output_dim(),
self.num_types)
self.span_metric = SpanBasedF1Measure(vocab,
tag_namespace="state_change_tags") # by default "O" is ignored in metric computation
self.num_tags = self.vocab.get_vocab_size("state_change_tags")
self.tag_projection_layer = TimeDistributed(Linear(self.seq2seq_encoder.get_output_dim() + 2
, self.num_tags))
self._type_accuracy = CategoricalAccuracy()
self.type_f1_metrics = {}
self.type_labels_vocab = self.vocab.get_index_to_token_vocabulary("state_change_type_labels")
for type_label in self.type_labels_vocab.values():
self.type_f1_metrics["type_" + type_label] = F1Measure(self.vocab.get_token_index(type_label, "state_change_type_labels"))
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例14: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
calculate_span_f1: bool = None,
label_encoding: Optional[str] = None,
label_namespace: str = "labels",
verbose_metrics: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(SimpleTagger, self).__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(label_namespace)
self.encoder = encoder
self._verbose_metrics = verbose_metrics
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
"text field embedding dim", "encoder input dim")
# We keep calculate_span_f1 as a constructor argument for API consistency with
# the CrfTagger, even it is redundant in this class
# (label_encoding serves the same purpose).
if calculate_span_f1 and not label_encoding:
raise ConfigurationError("calculate_span_f1 is True, but "
"no label_encoding was specified.")
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
if calculate_span_f1 or label_encoding:
self._f1_metric = SpanBasedF1Measure(vocab,
tag_namespace=label_namespace,
label_encoding=label_encoding)
else:
self._f1_metric = None
initializer(self)
示例15: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TimeDistributed [as 别名]
def __init__(self,
vocab: Vocabulary,
span_encoder: Seq2SeqEncoder,
reasoning_encoder: Seq2SeqEncoder,
input_dropout: float = 0.3,
hidden_dim_maxpool: int = 1024,
class_embs: bool = True,
reasoning_use_obj: bool = True,
reasoning_use_answer: bool = True,
reasoning_use_question: bool = True,
pool_reasoning: bool = True,
pool_answer: bool = True,
pool_question: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
):
super(HGL_Model, self).__init__(vocab)
self.detector = SimpleDetector(pretrained=True, average_pool=True, semantic=class_embs, final_dim=512)
###################################################################################################
self.rnn_input_dropout = TimeDistributed(InputVariationalDropout(input_dropout)) if input_dropout > 0 else None
self.span_encoder = TimeDistributed(span_encoder)
self.reasoning_encoder = TimeDistributed(reasoning_encoder)
self.Graph_reasoning = Graph_reasoning(512)
self.QAHG = BilinearMatrixAttention(
matrix_1_dim=span_encoder.get_output_dim(),
matrix_2_dim=span_encoder.get_output_dim(),
)
self.VAHG = BilinearMatrixAttention(
matrix_1_dim=span_encoder.get_output_dim(),
matrix_2_dim=self.detector.final_dim,
)
self.reasoning_use_obj = reasoning_use_obj
self.reasoning_use_answer = reasoning_use_answer
self.reasoning_use_question = reasoning_use_question
self.pool_reasoning = pool_reasoning
self.pool_answer = pool_answer
self.pool_question = pool_question
dim = sum([d for d, to_pool in [(reasoning_encoder.get_output_dim(), self.pool_reasoning),
(span_encoder.get_output_dim(), self.pool_answer),
(span_encoder.get_output_dim(), self.pool_question)] if to_pool])
self.final_mlp = torch.nn.Sequential(
torch.nn.Dropout(input_dropout, inplace=False),
torch.nn.Linear(dim, hidden_dim_maxpool),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(input_dropout, inplace=False),
torch.nn.Linear(hidden_dim_maxpool, 1),
)
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)