本文整理汇总了Python中allennlp.modules.TextFieldEmbedder方法的典型用法代码示例。如果您正苦于以下问题:Python modules.TextFieldEmbedder方法的具体用法?Python modules.TextFieldEmbedder怎么用?Python modules.TextFieldEmbedder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.modules
的用法示例。
在下文中一共展示了modules.TextFieldEmbedder方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
verbose_metrics: bool = False,
dropout: float = 0.2,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.dropout = torch.nn.Dropout(dropout)
self.num_classes = self.vocab.get_vocab_size("labels")
self.classifier_feedforward = torch.nn.Linear(self.text_field_embedder.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例2: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
text_encoder: Seq2SeqEncoder,
classifier_feedforward: FeedForward,
verbose_metrics: False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size("labels")
self.text_encoder = text_encoder
self.classifier_feedforward = classifier_feedforward
self.prediction_layer = torch.nn.Linear(self.classifier_feedforward.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
self.pool = lambda text, mask: util.get_final_encoder_states(text, mask, bidirectional=True)
initializer(self)
示例3: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
include_start_end_transitions: bool = True,
dropout: Optional[float] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = 'labels'
self.num_tags = self.vocab.get_vocab_size(self.label_namespace)
# encode text
self.text_field_embedder = text_field_embedder
self.encoder = encoder
self.dropout = torch.nn.Dropout(dropout) if dropout else None
# crf
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags))
self.crf = ConditionalRandomField(self.num_tags, constraints=None, include_start_end_transitions=include_start_end_transitions)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
for index, label in self.vocab.get_index_to_token_vocabulary(self.label_namespace).items():
self.metrics['F1_' + label] = F1Measure(positive_label=index)
initializer(self)
示例4: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
predictor_dropout=0.0,
labels_namespace: str = "labels",
detect_namespace: str = "d_tags",
verbose_metrics: bool = False,
label_smoothing: float = 0.0,
confidence: float = 0.0,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(Seq2Labels, self).__init__(vocab, regularizer)
self.label_namespaces = [labels_namespace,
detect_namespace]
self.text_field_embedder = text_field_embedder
self.num_labels_classes = self.vocab.get_vocab_size(labels_namespace)
self.num_detect_classes = self.vocab.get_vocab_size(detect_namespace)
self.label_smoothing = label_smoothing
self.confidence = confidence
self.incorr_index = self.vocab.get_token_index("INCORRECT",
namespace=detect_namespace)
self._verbose_metrics = verbose_metrics
self.predictor_dropout = TimeDistributed(torch.nn.Dropout(predictor_dropout))
self.tag_labels_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_labels_classes))
self.tag_detect_projection_layer = TimeDistributed(
Linear(text_field_embedder._token_embedders['bert'].get_output_dim(), self.num_detect_classes))
self.metrics = {"accuracy": CategoricalAccuracy()}
initializer(self)
示例5: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(
self,
vocab: Vocabulary,
sentence_embedder: TextFieldEmbedder,
action_embedding_dim: int,
encoder: Seq2SeqEncoder,
attention: Attention,
decoder_beam_search: BeamSearch,
max_decoding_steps: int,
dropout: float = 0.0,
) -> None:
super(NlvrDirectSemanticParser, self).__init__(
vocab=vocab,
sentence_embedder=sentence_embedder,
action_embedding_dim=action_embedding_dim,
encoder=encoder,
dropout=dropout,
)
self._decoder_trainer = MaximumMarginalLikelihood()
self._decoder_step = BasicTransitionFunction(
encoder_output_dim=self._encoder.get_output_dim(),
action_embedding_dim=action_embedding_dim,
input_attention=attention,
activation=Activation.by_name("tanh")(),
add_action_bias=False,
dropout=dropout,
)
self._decoder_beam_search = decoder_beam_search
self._max_decoding_steps = max_decoding_steps
self._action_padding_index = -1
示例6: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(
self,
vocab: Vocabulary,
sentence_embedder: TextFieldEmbedder,
action_embedding_dim: int,
encoder: Seq2SeqEncoder,
dropout: float = 0.0,
rule_namespace: str = "rule_labels",
) -> None:
super(NlvrSemanticParser, self).__init__(vocab=vocab)
self._sentence_embedder = sentence_embedder
self._denotation_accuracy = Average()
self._consistency = Average()
self._encoder = encoder
if dropout > 0:
self._dropout = torch.nn.Dropout(p=dropout)
else:
self._dropout = lambda x: x
self._rule_namespace = rule_namespace
self._action_embedder = Embedding(
num_embeddings=vocab.get_vocab_size(self._rule_namespace),
embedding_dim=action_embedding_dim,
)
# This is what we pass as input in the first step of decoding, when we don't have a
# previous action.
self._first_action_embedding = torch.nn.Parameter(torch.FloatTensor(action_embedding_dim))
torch.nn.init.normal_(self._first_action_embedding)
示例7: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
# Need to send it verbatim because otherwise FromParams doesn't work appropriately.
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
contextualize_pair_comparators=contextualize_pair_comparators,
coverage_loss=coverage_loss,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._answer_loss = torch.nn.CrossEntropyLoss()
self._accuracy = CategoricalAccuracy()
示例8: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
coverage_loss=coverage_loss,
contextualize_pair_comparators=contextualize_pair_comparators,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._ignore_index = -1
self._answer_loss = torch.nn.CrossEntropyLoss(ignore_index=self._ignore_index)
self._coverage_loss = coverage_loss
self._accuracy = CategoricalAccuracy()
self._entailment_f1 = F1Measure(self._label2idx["entailment"])
示例9: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
phrase_layer: Seq2SeqEncoder,
projected_layer: Seq2SeqEncoder,
flow_layer: Seq2SeqEncoder,
contextual_passage: Seq2SeqEncoder,
contextual_question: Seq2SeqEncoder,
dropout: float = 0.2,
regularizer: Optional[RegularizerApplicator] = None,
initializer: InitializerApplicator = InitializerApplicator(),
):
super(MultiGranularityHierarchicalAttentionFusionNetworks, self).__init__(vocab, regularizer)
self._text_field_embedder = text_field_embedder
self._phrase_layer = phrase_layer
self._encoding_dim = self._phrase_layer.get_output_dim()
self.projected_layer = torch.nn.Linear(self._encoding_dim + 1024, self._encoding_dim)
self.fuse = FusionLayer(self._encoding_dim)
self.projected_lstm = projected_layer
self.flow = flow_layer
self.contextual_layer_p = contextual_passage
self.contextual_layer_q = contextual_question
self.linear_self_align = torch.nn.Linear(self._encoding_dim, 1)
self.bilinear_layer_s = BilinearSeqAtt(self._encoding_dim, self._encoding_dim)
self.bilinear_layer_e = BilinearSeqAtt(self._encoding_dim, self._encoding_dim)
self.yesno_predictor = torch.nn.Linear(self._encoding_dim, 3)
self.relu = torch.nn.ReLU()
self._max_span_length = 30
self._span_start_accuracy = CategoricalAccuracy()
self._span_end_accuracy = CategoricalAccuracy()
self._span_accuracy = BooleanAccuracy()
self._squad_metrics = SquadEmAndF1()
self._span_yesno_accuracy = CategoricalAccuracy()
self._official_f1 = Average()
self._variational_dropout = InputVariationalDropout(dropout)
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例10: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self,
vocab: Vocabulary,
source_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
attention: Attention,
beam_size: int,
max_decoding_steps: int,
target_embedding_dim: int = None,
copy_token: str = "@COPY@",
source_namespace: str = "tokens",
target_namespace: str = "target_tokens",
tensor_based_metric: Metric = None,
token_based_metric: Metric = None,
tie_embeddings: bool = False) -> None:
target_embedding_dim = target_embedding_dim or source_embedder.get_output_dim()
CopyNetSeq2Seq.__init__(
self,
vocab,
source_embedder,
encoder,
attention,
beam_size,
max_decoding_steps,
target_embedding_dim,
copy_token,
source_namespace,
target_namespace,
tensor_based_metric,
token_based_metric
)
self._tie_embeddings = tie_embeddings
if self._tie_embeddings:
assert source_namespace == target_namespace
assert "token_embedder_tokens" in dict(self._source_embedder.named_children())
source_token_embedder = dict(self._source_embedder.named_children())["token_embedder_tokens"]
self._target_embedder.weight = source_token_embedder.weight
if tensor_based_metric is None:
self._tensor_based_metric = None
示例11: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self,
vocab: Vocabulary,
source_text_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
decoder: SeqDecoder,
tied_source_embedder_key: Optional[str] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(CustomComposedSeq2Seq, self).__init__(vocab, regularizer)
self._source_text_embedder = source_text_embedder
self._encoder = encoder
self._decoder = decoder
if self._encoder.get_output_dim() != self._decoder.get_output_dim():
raise ConfigurationError(f"Encoder output dimension {self._encoder.get_output_dim()} should be"
f" equal to decoder dimension {self._decoder.get_output_dim()}.")
if tied_source_embedder_key:
if not isinstance(self._source_text_embedder, BasicTextFieldEmbedder):
raise ConfigurationError("Unable to tie embeddings,"
"Source text embedder is not an instance of `BasicTextFieldEmbedder`.")
source_embedder = self._source_text_embedder._token_embedders[tied_source_embedder_key]
if not isinstance(source_embedder, Embedding):
raise ConfigurationError("Unable to tie embeddings,"
"Selected source embedder is not an instance of `Embedding`.")
if source_embedder.get_output_dim() != self._decoder.target_embedder.get_output_dim():
raise ConfigurationError(f"Output Dimensions mismatch between"
f"source embedder and target embedder.")
self._source_text_embedder._token_embedders[tied_source_embedder_key] = self._decoder.target_embedder
initializer(self)
示例12: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self,
vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
question_encoder: Seq2SeqEncoder,
passage_encoder: Seq2SeqEncoder,
pair_encoder: AttentionEncoder,
self_encoder: AttentionEncoder,
output_layer: QAOutputLayer,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
share_encoder: bool = False):
super().__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.question_encoder = question_encoder
self.passage_encoder = passage_encoder
self.pair_encoder = pair_encoder
self.self_encoder = self_encoder
self.output_layer = output_layer
self._span_start_accuracy = CategoricalAccuracy()
self._span_end_accuracy = CategoricalAccuracy()
self._span_accuracy = BooleanAccuracy()
self._squad_metrics = SquadEmAndF1()
self.share_encoder = share_encoder
self.loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例13: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self,
vocab: Vocabulary,
input_embedder: TextFieldEmbedder,
encoder: Encoder = None,
dropout: float = None,
initializer: InitializerApplicator = InitializerApplicator()
) -> None:
"""
Parameters
----------
vocab: `Vocabulary`
vocab to use
input_embedder: `TextFieldEmbedder`
generic embedder of tokens
encoder: `Encoder`, optional (default = None)
Seq2Vec or Seq2Seq Encoder wrapper. If no encoder is provided,
assume that the input is a bag of word counts, for linear classification.
dropout: `float`, optional (default = None)
if set, will apply dropout to output of encoder.
initializer: `InitializerApplicator`
generic initializer
"""
super().__init__(vocab)
self._input_embedder = input_embedder
if dropout:
self._dropout = torch.nn.Dropout(dropout)
else:
self._dropout = None
self._encoder = encoder
self._num_labels = vocab.get_vocab_size(namespace="labels")
if self._encoder:
self._clf_input_dim = self._encoder.get_output_dim()
else:
self._clf_input_dim = self._input_embedder.get_output_dim()
self._classification_layer = torch.nn.Linear(self._clf_input_dim,
self._num_labels)
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例14: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
calculate_span_f1: bool = None,
label_encoding: Optional[str] = None,
label_namespace: str = "labels",
verbose_metrics: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super(SimpleTagger, self).__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size(label_namespace)
self.encoder = encoder
self._verbose_metrics = verbose_metrics
self.tag_projection_layer = TimeDistributed(Linear(self.encoder.get_output_dim(),
self.num_classes))
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
"text field embedding dim", "encoder input dim")
# We keep calculate_span_f1 as a constructor argument for API consistency with
# the CrfTagger, even it is redundant in this class
# (label_encoding serves the same purpose).
if calculate_span_f1 and not label_encoding:
raise ConfigurationError("calculate_span_f1 is True, but "
"no label_encoding was specified.")
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
if calculate_span_f1 or label_encoding:
self._f1_metric = SpanBasedF1Measure(vocab,
tag_namespace=label_namespace,
label_encoding=label_encoding)
else:
self._f1_metric = None
initializer(self)
示例15: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import TextFieldEmbedder [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
aggregate_feedforward: FeedForward,
premise_encoder: Optional[Seq2SeqEncoder] = None,
hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
initializer: InitializerApplicator = InitializerApplicator(),
aggregate_premise: Optional[str] = "max",
aggregate_hypothesis: Optional[str] = "max",
embeddings_dropout_value: Optional[float] = 0.0,
share_encoders: Optional[bool] = False) -> None:
super(StackedNNAggregateCustom, self).__init__(vocab)
self._text_field_embedder = text_field_embedder
if embeddings_dropout_value > 0.0:
self._embeddings_dropout = torch.nn.Dropout(p=embeddings_dropout_value)
else:
self._embeddings_dropout = lambda x: x
self._aggregate_feedforward = aggregate_feedforward
self._premise_encoder = premise_encoder
self._hypothesis_encoder = hypothesis_encoder
self._premise_aggregate = aggregate_premise
self._hypothesis_aggregate = aggregate_hypothesis
self._num_labels = vocab.get_vocab_size(namespace="labels")
premise_output_dim = self._text_field_embedder.get_output_dim()
if self._premise_encoder is not None:
premise_output_dim = self._premise_encoder.get_output_dim()
hypothesis_output_dim = self._text_field_embedder.get_output_dim()
if self._hypothesis_encoder is not None:
hypothesis_output_dim = self._hypothesis_encoder.get_output_dim()
if premise_output_dim != hypothesis_output_dim:
raise ConfigurationError("Output dimension of the premise_encoder (dim: {}), "
"plus hypothesis_encoder (dim: {})"
"must match! "
.format(premise_output_dim,
hypothesis_output_dim))
if premise_output_dim * 4 != \
aggregate_feedforward.get_input_dim():
raise ConfigurationError("The output of aggregate_feedforward input dim ({2}) "
"should be {3} = 4 x {0} ({1} = premise_output_dim == hypothesis_output_dim)!"
.format(premise_output_dim,
hypothesis_output_dim,
aggregate_feedforward.get_input_dim(),
4 * premise_output_dim))
if aggregate_feedforward.get_output_dim() != self._num_labels:
raise ConfigurationError("Final output dimension (%d) must equal num labels (%d)" %
(aggregate_feedforward.get_output_dim(), self._num_labels))
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)