本文整理汇总了Python中allennlp.modules.FeedForward方法的典型用法代码示例。如果您正苦于以下问题:Python modules.FeedForward方法的具体用法?Python modules.FeedForward怎么用?Python modules.FeedForward使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.modules
的用法示例。
在下文中一共展示了modules.FeedForward方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_feedforward_encoder_exactly_match_feedforward_each_item
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def test_feedforward_encoder_exactly_match_feedforward_each_item(self):
feedforward = FeedForward(
input_dim=10, num_layers=1, hidden_dims=10, activations=Activation.by_name("linear")()
)
encoder = FeedForwardEncoder(feedforward)
tensor = torch.randn([2, 3, 10])
output = encoder(tensor)
target = feedforward(tensor)
numpy.testing.assert_array_almost_equal(
target.detach().cpu().numpy(), output.detach().cpu().numpy()
)
# mask should work
mask = torch.tensor([[True, True, True], [True, False, False]])
output = encoder(tensor, mask)
target = feedforward(tensor) * mask.unsqueeze(dim=-1).float()
numpy.testing.assert_array_almost_equal(
target.detach().cpu().numpy(), output.detach().cpu().numpy()
)
示例2: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
similarity_function: SimilarityFunction = None,
dropout: float = 0.5) -> None:
super().__init__()
self._encoder = encoder
self._matrix_attention = LegacyMatrixAttention(similarity_function)
self._projection_feedforward = projection_feedforward
self._inference_encoder = inference_encoder
if dropout:
self.dropout = torch.nn.Dropout(dropout)
self.rnn_input_dropout = InputVariationalDropout(dropout)
else:
self.dropout = None
self.rnn_input_dropout = None
self._output_feedforward = output_feedforward
示例3: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self,
vocab,
encoder: FeedForward,
mean_projection: FeedForward,
log_variance_projection: FeedForward,
decoder: FeedForward,
kld_clamp: Optional[float] = None,
z_dropout: float = 0.2) -> None:
super(LogisticNormal, self).__init__(vocab)
self.encoder = encoder
self.mean_projection = mean_projection
self.log_variance_projection = log_variance_projection
self._kld_clamp = kld_clamp
self._decoder = torch.nn.Linear(decoder.get_input_dim(), decoder.get_output_dim(),
bias=False)
self._z_dropout = torch.nn.Dropout(z_dropout)
self.latent_dim = mean_projection.get_output_dim()
示例4: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
input_dim: int,
num_classes: int,
label_namespace: str = "labels",
feedforward: Optional[FeedForward] = None,
dropout: Optional[float] = None,
verbose_metrics: bool = False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.input_dim = input_dim
self.num_classes = num_classes
self._verbose_metrics = verbose_metrics
if dropout:
self.dropout = torch.nn.Dropout(dropout)
else:
self.dropout = None
self._feedforward = feedforward
if self._feedforward is not None:
self.projection_layer = Linear(feedforward.get_output_dim(), self.num_classes)
else:
self.projection_layer = Linear(self.input_dim, self.num_classes)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3),
"accuracy5": CategoricalAccuracy(top_k=5)
}
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例5: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
text_encoder: Seq2SeqEncoder,
classifier_feedforward: FeedForward,
verbose_metrics: False,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None,
) -> None:
super(TextClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size("labels")
self.text_encoder = text_encoder
self.classifier_feedforward = classifier_feedforward
self.prediction_layer = torch.nn.Linear(self.classifier_feedforward.get_output_dim() , self.num_classes)
self.label_accuracy = CategoricalAccuracy()
self.label_f1_metrics = {}
self.verbose_metrics = verbose_metrics
for i in range(self.num_classes):
self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i)
self.loss = torch.nn.CrossEntropyLoss()
self.pool = lambda text, mask: util.get_final_encoder_states(text, mask, bidirectional=True)
initializer(self)
示例6: test_get_dimension_is_correct
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def test_get_dimension_is_correct(self):
feedforward = FeedForward(
input_dim=10, num_layers=1, hidden_dims=10, activations=Activation.by_name("linear")()
)
encoder = FeedForwardEncoder(feedforward)
assert encoder.get_input_dim() == feedforward.get_input_dim()
assert encoder.get_output_dim() == feedforward.get_output_dim()
示例7: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(
self,
encoder_output_dim: int,
action_embedding_dim: int,
input_attention: Attention,
activation: Activation = Activation.by_name("relu")(),
add_action_bias: bool = True,
mixture_feedforward: FeedForward = None,
dropout: float = 0.0,
num_layers: int = 1,
) -> None:
super().__init__(
encoder_output_dim=encoder_output_dim,
action_embedding_dim=action_embedding_dim,
input_attention=input_attention,
activation=activation,
add_action_bias=add_action_bias,
dropout=dropout,
num_layers=num_layers,
)
self._mixture_feedforward = mixture_feedforward
if mixture_feedforward is not None:
check_dimensions_match(
encoder_output_dim,
mixture_feedforward.get_input_dim(),
"hidden state embedding dim",
"mixture feedforward input dim",
)
check_dimensions_match(
mixture_feedforward.get_output_dim(),
1,
"mixture feedforward output dim",
"dimension for scalar value",
)
示例8: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(
self,
encoder_output_dim: int,
action_embedding_dim: int,
input_attention: Attention,
activation: Activation = Activation.by_name("relu")(),
add_action_bias: bool = True,
mixture_feedforward: FeedForward = None,
dropout: float = 0.0,
) -> None:
super().__init__(
encoder_output_dim=encoder_output_dim,
action_embedding_dim=action_embedding_dim,
input_attention=input_attention,
activation=activation,
add_action_bias=add_action_bias,
dropout=dropout,
)
self._linked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))
self._mixture_feedforward = mixture_feedforward
if mixture_feedforward is not None:
check_dimensions_match(
encoder_output_dim,
mixture_feedforward.get_input_dim(),
"hidden state embedding dim",
"mixture feedforward input dim",
)
check_dimensions_match(
mixture_feedforward.get_output_dim(),
1,
"mixture feedforward output dim",
"dimension for scalar value",
)
示例9: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
# Need to send it verbatim because otherwise FromParams doesn't work appropriately.
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
contextualize_pair_comparators=contextualize_pair_comparators,
coverage_loss=coverage_loss,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._answer_loss = torch.nn.CrossEntropyLoss()
self._accuracy = CategoricalAccuracy()
示例10: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss,
similarity_function: SimilarityFunction = DotProductSimilarity(),
dropout: float = 0.5,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab=vocab,
text_field_embedder=text_field_embedder,
encoder=encoder,
similarity_function=similarity_function,
projection_feedforward=projection_feedforward,
inference_encoder=inference_encoder,
output_feedforward=output_feedforward,
output_logit=output_logit,
final_feedforward=final_feedforward,
coverage_loss=coverage_loss,
contextualize_pair_comparators=contextualize_pair_comparators,
pair_context_encoder=pair_context_encoder,
pair_feedforward=pair_feedforward,
dropout=dropout,
initializer=initializer,
regularizer=regularizer)
self._ignore_index = -1
self._answer_loss = torch.nn.CrossEntropyLoss(ignore_index=self._ignore_index)
self._coverage_loss = coverage_loss
self._accuracy = CategoricalAccuracy()
self._entailment_f1 = F1Measure(self._label2idx["entailment"])
示例11: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, architecture: FeedForward) -> None:
super(MLP, self).__init__(architecture)
self._architecture = architecture
示例12: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(
self,
vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
seq2vec_encoder: Seq2VecEncoder,
seq2seq_encoder: Seq2SeqEncoder = None,
feedforward: Optional[FeedForward] = None,
dropout: float = None,
num_labels: int = None,
label_namespace: str = "labels",
namespace: str = "tokens",
initializer: InitializerApplicator = InitializerApplicator(),
**kwargs,
) -> None:
super().__init__(vocab, **kwargs)
self._text_field_embedder = text_field_embedder
if seq2seq_encoder:
self._seq2seq_encoder = seq2seq_encoder
else:
self._seq2seq_encoder = None
self._seq2vec_encoder = seq2vec_encoder
self._feedforward = feedforward
if feedforward is not None:
self._classifier_input_dim = self._feedforward.get_output_dim()
else:
self._classifier_input_dim = self._seq2vec_encoder.get_output_dim()
if dropout:
self._dropout = torch.nn.Dropout(dropout)
else:
self._dropout = None
self._label_namespace = label_namespace
self._namespace = namespace
if num_labels:
self._num_labels = num_labels
else:
self._num_labels = vocab.get_vocab_size(namespace=self._label_namespace)
self._classification_layer = torch.nn.Linear(self._classifier_input_dim, self._num_labels)
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例13: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
encoder_keys: List[str],
mask_key: str,
pair2vec_config_file: str,
pair2vec_model_file: str,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
similarity_function: SimilarityFunction,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
initializer: InitializerApplicator = InitializerApplicator(),
dropout: float = 0.5,
pair2vec_dropout: float = 0.0,
bidirectional_pair2vec: bool = True,
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self._vocab = vocab
self.pair2vec = util.get_pair2vec(pair2vec_config_file, pair2vec_model_file)
self._encoder_keys = encoder_keys
self._mask_key = mask_key
self._text_field_embedder = text_field_embedder
self._projection_feedforward = projection_feedforward
self._encoder = encoder
from allennlp.modules.matrix_attention import DotProductMatrixAttention
self._matrix_attention = DotProductMatrixAttention()
self._inference_encoder = inference_encoder
self._pair2vec_dropout = torch.nn.Dropout(pair2vec_dropout)
self._bidirectional_pair2vec = bidirectional_pair2vec
if dropout:
self.dropout = torch.nn.Dropout(dropout)
self.rnn_input_dropout = VariationalDropout(dropout)
else:
self.dropout = None
self.rnn_input_dropout = None
self._output_feedforward = output_feedforward
self._output_logit = output_logit
self._num_labels = vocab.get_vocab_size(namespace="labels")
self._accuracy = CategoricalAccuracy()
self._loss = torch.nn.CrossEntropyLoss()
initializer(self)
示例14: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
similarity_function: SimilarityFunction,
projection_feedforward: FeedForward,
inference_encoder: Seq2SeqEncoder,
output_feedforward: FeedForward,
output_logit: FeedForward,
final_feedforward: FeedForward,
coverage_loss: CoverageLoss = None,
contextualize_pair_comparators: bool = False,
pair_context_encoder: Seq2SeqEncoder = None,
pair_feedforward: FeedForward = None,
optimize_coverage_for: List = ["entailment", "neutral"],
dropout: float = 0.5,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self._label2idx = self.vocab.get_token_to_index_vocabulary('labels')
self._text_field_embedder = text_field_embedder
self._entailment_comparator_layer_1 = EsimComparatorLayer1(encoder, dropout)
self._entailment_comparator_layer_2 = EsimComparatorLayer2(similarity_function)
self._td_entailment_comparator_layer_1 = TimeDistributed(self._entailment_comparator_layer_1)
self._td_entailment_comparator_layer_2 = TimeDistributed(self._entailment_comparator_layer_2)
self._entailment_comparator_layer_3plus_local = EsimComparatorLayer3Plus(projection_feedforward, inference_encoder,
output_feedforward, dropout)
self._td_entailment_comparator_layer_3plus_local = EachOutputTimeDistributed(self._entailment_comparator_layer_3plus_local)
self._entailment_comparator_layer_3plus_global = copy.deepcopy(self._entailment_comparator_layer_3plus_local)
self._contextualize_pair_comparators = contextualize_pair_comparators
if not self._contextualize_pair_comparators:
self._output_logit = output_logit
self._td_output_logit = TimeDistributed(self._output_logit)
self._final_feedforward = final_feedforward
self._td_final_feedforward = TimeDistributed(final_feedforward)
linear = torch.nn.Linear(2*self._entailment_comparator_layer_3plus_local.get_output_dim(),
self._final_feedforward.get_input_dim())
self._local_global_projection = torch.nn.Sequential(linear, torch.nn.ReLU())
if self._contextualize_pair_comparators:
self._pair_context_encoder = pair_context_encoder
self._td_pair_feedforward = TimeDistributed(pair_feedforward)
self._coverage_loss = coverage_loss
# Do not apply initializer. If you do, make sure it doesn't reinitialize transferred parameters.
示例15: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import FeedForward [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
sentence_encoder: Seq2VecEncoder,
classifier_feedforward: FeedForward,
label_weight: Dict[str, float] = None,
use_label_distribution: bool = False,
image_classification_ratio: float = 0.0,
decay_every_i_step=100000,
decay_ratio=0.8,
instance_count=100000,
max_epoch=10,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None
) -> None:
super(BasicClassifier, self).__init__(vocab, regularizer)
self.text_field_embedder = text_field_embedder
self.num_classes = self.vocab.get_vocab_size("labels")
self.sentence_encoder = sentence_encoder
self.classifier_feedforward = classifier_feedforward
if text_field_embedder.get_output_dim() != sentence_encoder.get_input_dim():
raise ConfigurationError("The output dimension of the text_field_embedder must match the "
"input dimension of the title_encoder. Found {} and {}, "
"respectively.".format(text_field_embedder.get_output_dim(),
sentence_encoder.get_input_dim()))
self.metrics = {
"accuracy": CategoricalAccuracy(),
"cnn_loss": Average()
}
if not use_label_distribution:
self.loss = torch.nn.CrossEntropyLoss()
else:
self.loss = torch.nn.CrossEntropyLoss()
self.image_classification_ratio = image_classification_ratio
self.decay_every_i_step = decay_every_i_step
self.decay_ratio = decay_ratio
self.training_step = 0
self.current_ratio = image_classification_ratio
self.total_steps = max_epoch*instance_count//64
self.step_every_epoch = instance_count // 64
print("每个epoch的step数量", self.step_every_epoch)
initializer(self)