本文整理汇总了Python中allennlp.modules.ConditionalRandomField方法的典型用法代码示例。如果您正苦于以下问题:Python modules.ConditionalRandomField方法的具体用法?Python modules.ConditionalRandomField怎么用?Python modules.ConditionalRandomField使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.modules
的用法示例。
在下文中一共展示了modules.ConditionalRandomField方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def __init__(self, gen_emb, domain_emb, num_classes=3, dropout=0.5, crf=False):
super(Model, self).__init__()
self.gen_embedding = torch.nn.Embedding(gen_emb.shape[0], gen_emb.shape[1])
self.gen_embedding.weight=torch.nn.Parameter(torch.from_numpy(gen_emb), requires_grad=False)
self.domain_embedding = torch.nn.Embedding(domain_emb.shape[0], domain_emb.shape[1])
self.domain_embedding.weight=torch.nn.Parameter(torch.from_numpy(domain_emb), requires_grad=False)
self.conv1=torch.nn.Conv1d(gen_emb.shape[1]+domain_emb.shape[1], 128, 5, padding=2 )
self.conv2=torch.nn.Conv1d(gen_emb.shape[1]+domain_emb.shape[1], 128, 3, padding=1 )
self.dropout=torch.nn.Dropout(dropout)
self.conv3=torch.nn.Conv1d(256, 256, 5, padding=2)
self.conv4=torch.nn.Conv1d(256, 256, 5, padding=2)
self.conv5=torch.nn.Conv1d(256, 256, 5, padding=2)
self.linear_ae=torch.nn.Linear(256, num_classes)
self.crf_flag=crf
if self.crf_flag:
from allennlp.modules import ConditionalRandomField
self.crf=ConditionalRandomField(num_classes)
示例2: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def __init__(self, config, use_crf=False):
super(BertForBIOAspectExtraction, self).__init__()
self.bert = BertModel(config)
self.use_crf = use_crf
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.affine = nn.Linear(config.hidden_size, 3)
if self.use_crf:
self.crf = ConditionalRandomField(3)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
示例3: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def __init__(self,
vocab: Vocabulary,
embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder) -> None:
super().__init__(vocab)
self._embedder = embedder
self._encoder = encoder
self._classifier = torch.nn.Linear(
in_features=encoder.get_output_dim(),
out_features=vocab.get_vocab_size('labels')
)
self._crf = ConditionalRandomField(
vocab.get_vocab_size('labels')
)
self._f1 = SpanBasedF1Measure(vocab, 'labels')
示例4: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def __init__(self, vocab: Vocabulary,
text_field_embedder: TextFieldEmbedder,
encoder: Seq2SeqEncoder,
include_start_end_transitions: bool = True,
dropout: Optional[float] = None,
initializer: InitializerApplicator = InitializerApplicator(),
regularizer: Optional[RegularizerApplicator] = None) -> None:
super().__init__(vocab, regularizer)
self.label_namespace = 'labels'
self.num_tags = self.vocab.get_vocab_size(self.label_namespace)
# encode text
self.text_field_embedder = text_field_embedder
self.encoder = encoder
self.dropout = torch.nn.Dropout(dropout) if dropout else None
# crf
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_tags))
self.crf = ConditionalRandomField(self.num_tags, constraints=None, include_start_end_transitions=include_start_end_transitions)
self.metrics = {
"accuracy": CategoricalAccuracy(),
"accuracy3": CategoricalAccuracy(top_k=3)
}
for index, label in self.vocab.get_index_to_token_vocabulary(self.label_namespace).items():
self.metrics['F1_' + label] = F1Measure(positive_label=index)
initializer(self)
示例5: setup_method
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def setup_method(self):
super().setup_method()
self.logits = torch.Tensor(
[
[[0, 0, 0.5, 0.5, 0.2], [0, 0, 0.3, 0.3, 0.1], [0, 0, 0.9, 10, 1]],
[[0, 0, 0.2, 0.5, 0.2], [0, 0, 3, 0.3, 0.1], [0, 0, 0.9, 1, 1]],
]
)
self.tags = torch.LongTensor([[2, 3, 4], [3, 2, 2]])
self.transitions = torch.Tensor(
[
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.8, 0.3, 0.1, 0.7, 0.9],
[-0.3, 2.1, -5.6, 3.4, 4.0],
[0.2, 0.4, 0.6, -0.3, -0.4],
[1.0, 1.0, 1.0, 1.0, 1.0],
]
)
self.transitions_from_start = torch.Tensor([0.1, 0.2, 0.3, 0.4, 0.6])
self.transitions_to_end = torch.Tensor([-0.1, -0.2, 0.3, -0.4, -0.4])
# Use the CRF Module with fixed transitions to compute the log_likelihood
self.crf = ConditionalRandomField(5)
self.crf.transitions = torch.nn.Parameter(self.transitions)
self.crf.start_transitions = torch.nn.Parameter(self.transitions_from_start)
self.crf.end_transitions = torch.nn.Parameter(self.transitions_to_end)
示例6: test_constrained_viterbi_tags
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def test_constrained_viterbi_tags(self):
constraints = {
(0, 0),
(0, 1),
(1, 1),
(1, 2),
(2, 2),
(2, 3),
(3, 3),
(3, 4),
(4, 4),
(4, 0),
}
# Add the transitions to the end tag
# and from the start tag.
for i in range(5):
constraints.add((5, i))
constraints.add((i, 6))
crf = ConditionalRandomField(num_tags=5, constraints=constraints)
crf.transitions = torch.nn.Parameter(self.transitions)
crf.start_transitions = torch.nn.Parameter(self.transitions_from_start)
crf.end_transitions = torch.nn.Parameter(self.transitions_to_end)
mask = torch.tensor([[True, True, True], [True, True, False]])
viterbi_path = crf.viterbi_tags(self.logits, mask)
# Get just the tags from each tuple of (tags, score).
viterbi_tags = [x for x, y in viterbi_path]
# Now the tags should respect the constraints
assert viterbi_tags == [[2, 3, 3], [2, 3]]
示例7: setUp
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def setUp(self):
super(TestConditionalRandomField, self).setUp()
self.logits = torch.Tensor([
[[0, 0, .5, .5, .2], [0, 0, .3, .3, .1], [0, 0, .9, 10, 1]],
[[0, 0, .2, .5, .2], [0, 0, 3, .3, .1], [0, 0, .9, 1, 1]],
])
self.tags = torch.LongTensor([
[2, 3, 4],
[3, 2, 2]
])
self.transitions = torch.Tensor([
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.8, 0.3, 0.1, 0.7, 0.9],
[-0.3, 2.1, -5.6, 3.4, 4.0],
[0.2, 0.4, 0.6, -0.3, -0.4],
[1.0, 1.0, 1.0, 1.0, 1.0]
])
self.transitions_from_start = torch.Tensor([0.1, 0.2, 0.3, 0.4, 0.6])
self.transitions_to_end = torch.Tensor([-0.1, -0.2, 0.3, -0.4, -0.4])
# Use the CRF Module with fixed transitions to compute the log_likelihood
self.crf = ConditionalRandomField(5)
self.crf.transitions = torch.nn.Parameter(self.transitions)
self.crf.start_transitions = torch.nn.Parameter(self.transitions_from_start)
self.crf.end_transitions = torch.nn.Parameter(self.transitions_to_end)
示例8: test_constrained_viterbi_tags
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def test_constrained_viterbi_tags(self):
constraints = set([(0, 0), (0, 1),
(1, 1), (1, 2),
(2, 2), (2, 3),
(3, 3), (3, 4),
(4, 4), (4, 0)])
# Add the transitions to the end tag
# and from the start tag.
for i in range(5):
constraints.add((5, i))
constraints.add((i, 6))
crf = ConditionalRandomField(num_tags=5, constraints=constraints)
crf.transitions = torch.nn.Parameter(self.transitions)
crf.start_transitions = torch.nn.Parameter(self.transitions_from_start)
crf.end_transitions = torch.nn.Parameter(self.transitions_to_end)
mask = torch.LongTensor([
[1, 1, 1],
[1, 1, 0]
])
viterbi_path = crf.viterbi_tags(self.logits, mask)
# Get just the tags from each tuple of (tags, score).
viterbi_tags = [x for x, y in viterbi_path]
# Now the tags should respect the constraints
assert viterbi_tags == [
[2, 3, 3],
[2, 3]
]
示例9: __init__
# 需要导入模块: from allennlp import modules [as 别名]
# 或者: from allennlp.modules import ConditionalRandomField [as 别名]
def __init__(self, vocab ,
text_field_embedder ,
encoder ,
label_namespace = u"labels",
constraint_type = None,
feedforward = None,
include_start_end_transitions = True,
dropout = None,
verbose_metrics = False,
initializer = InitializerApplicator(),
regularizer = None) :
super(CrfTagger, self).__init__(vocab, regularizer)
self.label_namespace = label_namespace
self.text_field_embedder = text_field_embedder
self.num_tags = self.vocab.get_vocab_size(label_namespace)
self.encoder = encoder
self._verbose_metrics = verbose_metrics
if dropout:
self.dropout = torch.nn.Dropout(dropout)
else:
self.dropout = None
self._feedforward = feedforward
if feedforward is not None:
output_dim = feedforward.get_output_dim()
else:
output_dim = self.encoder.get_output_dim()
self.tag_projection_layer = TimeDistributed(Linear(output_dim,
self.num_tags))
if constraint_type is not None:
labels = self.vocab.get_index_to_token_vocabulary(label_namespace)
constraints = allowed_transitions(constraint_type, labels)
else:
constraints = None
self.crf = ConditionalRandomField(
self.num_tags, constraints,
include_start_end_transitions=include_start_end_transitions
)
self.span_metric = SpanBasedF1Measure(vocab,
tag_namespace=label_namespace,
label_encoding=constraint_type or u"BIO")
check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
u"text field embedding dim", u"encoder input dim")
if feedforward is not None:
check_dimensions_match(encoder.get_output_dim(), feedforward.get_input_dim(),
u"encoder output dim", u"feedforward input dim")
initializer(self)
#overrides