本文整理汇总了Python中allennlp.common.tqdm.Tqdm.tqdm方法的典型用法代码示例。如果您正苦于以下问题:Python Tqdm.tqdm方法的具体用法?Python Tqdm.tqdm怎么用?Python Tqdm.tqdm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.common.tqdm.Tqdm
的用法示例。
在下文中一共展示了Tqdm.tqdm方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _read_pretrained_tokens
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def _read_pretrained_tokens(embeddings_file_uri: str) -> List[str]:
# Moving this import to the top breaks everything (cycling import, I guess)
from allennlp.modules.token_embedders.embedding import EmbeddingsTextFile
logger.info("Reading pretrained tokens from: %s", embeddings_file_uri)
tokens: List[str] = []
with EmbeddingsTextFile(embeddings_file_uri) as embeddings_file:
for line_number, line in enumerate(Tqdm.tqdm(embeddings_file), start=1):
token_end = line.find(" ")
if token_end >= 0:
token = line[:token_end]
tokens.append(token)
else:
line_begin = line[:20] + "..." if len(line) > 20 else line
logger.warning("Skipping line number %d: %s", line_number, line_begin)
return tokens
示例2: description_from_metrics
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def description_from_metrics(metrics: Dict[str, float]) -> str:
if not HasBeenWarned.tqdm_ignores_underscores and any(
metric_name.startswith("_") for metric_name in metrics
):
logger.warning(
'Metrics with names beginning with "_" will ' "not be logged to the tqdm progress bar."
)
HasBeenWarned.tqdm_ignores_underscores = True
return (
", ".join(
[
"%s: %.4f" % (name, value)
for name, value in metrics.items()
if not name.startswith("_")
]
)
+ " ||"
)
示例3: _read_pretrained_tokens
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def _read_pretrained_tokens(embeddings_file_uri ) :
# Moving this import to the top breaks everything (cycling import, I guess)
from allennlp.modules.token_embedders.embedding import EmbeddingsTextFile
logger.info(u'Reading pretrained tokens from: %s', embeddings_file_uri)
tokens = set()
with EmbeddingsTextFile(embeddings_file_uri) as embeddings_file:
for line_number, line in enumerate(Tqdm.tqdm(embeddings_file), start=1):
token_end = line.find(u' ')
if token_end >= 0:
token = line[:token_end]
tokens.add(token)
else:
line_begin = line[:20] + u'...' if len(line) > 20 else line
logger.warning('Skipping line number %d: %s', line_number, line_begin)
return tokens
示例4: extend_from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def extend_from_instances(self,
params ,
instances = ()) :
u"""
Extends an already generated vocabulary using a collection of instances.
"""
min_count = params.pop(u"min_count", None)
max_vocab_size = pop_max_vocab_size(params)
non_padded_namespaces = params.pop(u"non_padded_namespaces", DEFAULT_NON_PADDED_NAMESPACES)
pretrained_files = params.pop(u"pretrained_files", {})
only_include_pretrained_words = params.pop_bool(u"only_include_pretrained_words", False)
tokens_to_add = params.pop(u"tokens_to_add", None)
params.assert_empty(u"Vocabulary - from dataset")
logger.info(u"Fitting token dictionary from dataset.")
namespace_token_counts = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
self._extend(counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add)
示例5: _read_pretrained_tokens
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def _read_pretrained_tokens(embeddings_file_uri: str) -> List[str]:
# Moving this import to the top breaks everything (cycling import, I guess)
from allennlp.modules.token_embedders.embedding import EmbeddingsTextFile
logger.info('Reading pretrained tokens from: %s', embeddings_file_uri)
tokens: List[str] = []
with EmbeddingsTextFile(embeddings_file_uri) as embeddings_file:
for line_number, line in enumerate(Tqdm.tqdm(embeddings_file), start=1):
token_end = line.find(' ')
if token_end >= 0:
token = line[:token_end]
tokens.append(token)
else:
line_begin = line[:20] + '...' if len(line) > 20 else line
logger.warning(f'Skipping line number %d: %s', line_number, line_begin)
return tokens
示例6: from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def from_instances(
cls,
instances: Iterable["adi.Instance"],
min_count: Dict[str, int] = None,
max_vocab_size: Union[int, Dict[str, int]] = None,
non_padded_namespaces: Iterable[str] = DEFAULT_NON_PADDED_NAMESPACES,
pretrained_files: Optional[Dict[str, str]] = None,
only_include_pretrained_words: bool = False,
tokens_to_add: Dict[str, List[str]] = None,
min_pretrained_embeddings: Dict[str, int] = None,
padding_token: Optional[str] = DEFAULT_PADDING_TOKEN,
oov_token: Optional[str] = DEFAULT_OOV_TOKEN,
) -> "Vocabulary":
"""
Constructs a vocabulary given a collection of `Instances` and some parameters.
We count all of the vocabulary items in the instances, then pass those counts
and the other parameters, to :func:`__init__`. See that method for a description
of what the other parameters do.
The `instances` parameter does not get an entry in a typical AllenNLP configuration file,
but the other parameters do (if you want non-default parameters).
"""
logger.info("Fitting token dictionary from dataset.")
padding_token = padding_token if padding_token is not None else DEFAULT_PADDING_TOKEN
oov_token = oov_token if oov_token is not None else DEFAULT_OOV_TOKEN
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
return cls(
counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add,
min_pretrained_embeddings=min_pretrained_embeddings,
padding_token=padding_token,
oov_token=oov_token,
)
示例7: from_files_and_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def from_files_and_instances(
cls,
instances: Iterable["adi.Instance"],
directory: str,
padding_token: Optional[str] = DEFAULT_PADDING_TOKEN,
oov_token: Optional[str] = DEFAULT_OOV_TOKEN,
min_count: Dict[str, int] = None,
max_vocab_size: Union[int, Dict[str, int]] = None,
non_padded_namespaces: Iterable[str] = DEFAULT_NON_PADDED_NAMESPACES,
pretrained_files: Optional[Dict[str, str]] = None,
only_include_pretrained_words: bool = False,
tokens_to_add: Dict[str, List[str]] = None,
min_pretrained_embeddings: Dict[str, int] = None,
) -> "Vocabulary":
"""
Extends an already generated vocabulary using a collection of instances.
The `instances` parameter does not get an entry in a typical AllenNLP configuration file,
but the other parameters do (if you want non-default parameters). See `__init__` for a
description of what the other parameters mean.
"""
vocab = cls.from_files(directory, padding_token, oov_token)
logger.info("Fitting token dictionary from dataset.")
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
vocab._extend(
counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add,
min_pretrained_embeddings=min_pretrained_embeddings,
)
return vocab
示例8: extend_from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def extend_from_instances(self, instances: Iterable["adi.Instance"]) -> None:
logger.info("Fitting token dictionary from dataset.")
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
self._extend(counter=namespace_token_counts)
示例9: evaluate
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def evaluate(model ,
instances ,
data_iterator ,
cuda_device ) :
_warned_tqdm_ignores_underscores = False
check_for_gpu(cuda_device)
with torch.no_grad():
model.eval()
iterator = data_iterator(instances,
num_epochs=1,
shuffle=False,
cuda_device=cuda_device)
logger.info(u"Iterating over dataset")
generator_tqdm = Tqdm.tqdm(iterator, total=data_iterator.get_num_batches(instances))
for batch in generator_tqdm:
model(**batch)
metrics = model.get_metrics()
if (not _warned_tqdm_ignores_underscores and
any(metric_name.startswith(u"_") for metric_name in metrics)):
logger.warning(u"Metrics with names beginning with \"_\" will "
u"not be logged to the tqdm progress bar.")
_warned_tqdm_ignores_underscores = True
description = u', '.join([u"%s: %.2f" % (name, value) for name, value
in list(metrics.items()) if not name.startswith(u"_")]) + u" ||"
generator_tqdm.set_description(description, refresh=False)
return model.get_metrics(reset=True)
示例10: from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def from_instances(cls,
instances ,
min_count = None,
max_vocab_size = None,
non_padded_namespaces = DEFAULT_NON_PADDED_NAMESPACES,
pretrained_files = None,
only_include_pretrained_words = False,
tokens_to_add = None) :
u"""
Constructs a vocabulary given a collection of `Instances` and some parameters.
We count all of the vocabulary items in the instances, then pass those counts
and the other parameters, to :func:`__init__`. See that method for a description
of what the other parameters do.
"""
logger.info(u"Fitting token dictionary from dataset.")
namespace_token_counts = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
return Vocabulary(counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add)
# There's enough logic here to require a custom from_params.
示例11: _validation_loss
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def _validation_loss(self) :
u"""
Computes the validation loss. Returns it and the number of batches.
"""
logger.info(u"Validating")
self._model.eval()
if self._validation_iterator is not None:
val_iterator = self._validation_iterator
else:
val_iterator = self._iterator
val_generator = val_iterator(self._validation_data,
num_epochs=1,
shuffle=False,
cuda_device=self._iterator_device)
num_validation_batches = val_iterator.get_num_batches(self._validation_data)
val_generator_tqdm = Tqdm.tqdm(val_generator,
total=num_validation_batches)
batches_this_epoch = 0
val_loss = 0
for batch in val_generator_tqdm:
loss = self._batch_loss(batch, for_training=False)
if loss is not None:
# You shouldn't necessarily have to compute a loss for validation, so we allow for
# `loss` to be None. We need to be careful, though - `batches_this_epoch` is
# currently only used as the divisor for the loss function, so we can safely only
# count those batches for which we actually have a loss. If this variable ever
# gets used for something else, we might need to change things around a bit.
batches_this_epoch += 1
val_loss += loss.detach().cpu().numpy()
# Update the description with the latest metrics
val_metrics = self._get_metrics(val_loss, batches_this_epoch)
description = self._description_from_metrics(val_metrics)
val_generator_tqdm.set_description(description, refresh=False)
return val_loss, batches_this_epoch
示例12: _description_from_metrics
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def _description_from_metrics(self, metrics ) :
if (not self._warned_tqdm_ignores_underscores and
any(metric_name.startswith(u"_") for metric_name in metrics)):
logger.warning(u"Metrics with names beginning with \"_\" will "
u"not be logged to the tqdm progress bar.")
self._warned_tqdm_ignores_underscores = True
return u', '.join([u"%s: %.4f" % (name, value) for name, value in
list(metrics.items()) if not name.startswith(u"_")]) + u" ||"
示例13: http_get
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def http_get(url , temp_file ) :
req = requests.get(url, stream=True)
content_length = req.headers.get(u'Content-Length')
total = int(content_length) if content_length is not None else None
progress = Tqdm.tqdm(unit=u"B", total=total)
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
# TODO(joelgrus): do we want to do checksums or anything like that?
示例14: from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def from_instances(cls,
instances: Iterable['adi.Instance'],
min_count: Dict[str, int] = None,
max_vocab_size: Union[int, Dict[str, int]] = None,
non_padded_namespaces: Iterable[str] = DEFAULT_NON_PADDED_NAMESPACES,
pretrained_files: Optional[Dict[str, str]] = None,
only_include_pretrained_words: bool = False,
tokens_to_add: Dict[str, List[str]] = None,
min_pretrained_embeddings: Dict[str, int] = None,
instances_aux: Optional[Iterable['adi.Instance']] = None) -> 'Vocabulary':
"""
Constructs a vocabulary given a collection of `Instances` and some parameters.
We count all of the vocabulary items in the instances, then pass those counts
and the other parameters, to :func:`__init__`. See that method for a description
of what the other parameters do.
"""
logger.info("Fitting token dictionary from dataset.")
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
if instances_aux is not None:
logger.info("Fitting token dictionary from auxillary dataset.")
for instance in Tqdm.tqdm(instances_aux):
instance.count_vocab_items(namespace_token_counts)
return VocabularyMultitask(counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add,
min_pretrained_embeddings=min_pretrained_embeddings)
# There's enough logic here to require a custom from_params.
示例15: extend_from_instances
# 需要导入模块: from allennlp.common.tqdm import Tqdm [as 别名]
# 或者: from allennlp.common.tqdm.Tqdm import tqdm [as 别名]
def extend_from_instances(self,
params: Params,
instances: Iterable['adi.Instance'] = ()) -> None:
"""
Extends an already generated vocabulary using a collection of instances.
"""
min_count = params.pop("min_count", None)
max_vocab_size = pop_max_vocab_size(params)
non_padded_namespaces = params.pop("non_padded_namespaces", DEFAULT_NON_PADDED_NAMESPACES)
pretrained_files = params.pop("pretrained_files", {})
min_pretrained_embeddings = params.pop("min_pretrained_embeddings", None)
only_include_pretrained_words = params.pop_bool("only_include_pretrained_words", False)
tokens_to_add = params.pop("tokens_to_add", None)
params.assert_empty("Vocabulary - from dataset")
logger.info("Fitting token dictionary from dataset.")
namespace_token_counts: Dict[str, Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for instance in Tqdm.tqdm(instances):
instance.count_vocab_items(namespace_token_counts)
self._extend(counter=namespace_token_counts,
min_count=min_count,
max_vocab_size=max_vocab_size,
non_padded_namespaces=non_padded_namespaces,
pretrained_files=pretrained_files,
only_include_pretrained_words=only_include_pretrained_words,
tokens_to_add=tokens_to_add,
min_pretrained_embeddings=min_pretrained_embeddings)