本文整理汇总了Python中allennlp.common.params.Params方法的典型用法代码示例。如果您正苦于以下问题:Python params.Params方法的具体用法?Python params.Params怎么用?Python params.Params使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类allennlp.common.params
的用法示例。
在下文中一共展示了params.Params方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_from_params_extend_config
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_from_params_extend_config(self):
vocab_dir = self.TEST_DIR / "vocab_save"
original_vocab = Vocabulary(non_padded_namespaces=["tokens"])
original_vocab.add_token_to_namespace("a", namespace="tokens")
original_vocab.save_to_files(vocab_dir)
text_field = TextField(
[Token(t) for t in ["a", "b"]], {"tokens": SingleIdTokenIndexer("tokens")}
)
instances = Batch([Instance({"text": text_field})])
# If you ask to extend vocab from `directory`, instances must be passed
# in Vocabulary constructor, or else there is nothing to extend to.
params = Params({"type": "extend", "directory": vocab_dir})
with pytest.raises(ConfigurationError):
_ = Vocabulary.from_params(params)
# If you ask to extend vocab, `directory` key must be present in params,
# or else there is nothing to extend from.
params = Params({"type": "extend"})
with pytest.raises(ConfigurationError):
_ = Vocabulary.from_params(params, instances=instances)
示例2: test_max_vocab_size_partial_dict
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_max_vocab_size_partial_dict(self):
indexers = {
"tokens": SingleIdTokenIndexer(),
"token_characters": TokenCharactersIndexer(min_padding_length=3),
}
instance = Instance(
{
"text": TextField(
[Token(w) for w in "Abc def ghi jkl mno pqr stu vwx yz".split(" ")], indexers
)
}
)
dataset = Batch([instance])
params = Params({"max_vocab_size": {"tokens": 1}})
vocab = Vocabulary.from_params(params=params, instances=dataset)
assert len(vocab.get_index_to_token_vocabulary("tokens").values()) == 3 # 1 + 2
assert len(vocab.get_index_to_token_vocabulary("token_characters").values()) == 28 # 26 + 2
示例3: test_custom_padding_oov_tokens
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_custom_padding_oov_tokens(self):
vocab = Vocabulary(oov_token="[UNK]")
assert vocab._oov_token == "[UNK]"
assert vocab._padding_token == "@@PADDING@@"
vocab = Vocabulary(padding_token="[PAD]")
assert vocab._oov_token == "@@UNKNOWN@@"
assert vocab._padding_token == "[PAD]"
vocab_dir = self.TEST_DIR / "vocab_save"
vocab = Vocabulary(oov_token="<UNK>")
vocab.add_tokens_to_namespace(["a0", "a1", "a2"], namespace="a")
vocab.save_to_files(vocab_dir)
params = Params({"type": "from_files", "directory": vocab_dir, "oov_token": "<UNK>"})
vocab = Vocabulary.from_params(params)
with pytest.raises(AssertionError) as excinfo:
vocab = Vocabulary.from_params(Params({"type": "from_files", "directory": vocab_dir}))
assert "OOV token not found!" in str(excinfo.value)
示例4: test_from_params
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_from_params(self):
params = Params({"type": "pretrained", "weights_file_path": self.temp_file})
initializer = Initializer.from_params(params)
assert initializer.weights
assert initializer.parameter_name_overrides == {}
name_overrides = {"a": "b", "c": "d"}
params = Params(
{
"type": "pretrained",
"weights_file_path": self.temp_file,
"parameter_name_overrides": name_overrides,
}
)
initializer = Initializer.from_params(params)
assert initializer.weights
assert initializer.parameter_name_overrides == name_overrides
示例5: test_exponential_works_properly
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_exponential_works_properly(self):
scheduler = LearningRateScheduler.from_params(
optimizer=Optimizer.from_params(
model_parameters=self.model.named_parameters(),
params=Params({"type": "sgd", "lr": 1.0}),
),
params=Params({"type": "exponential", "gamma": 0.5}),
)
optimizer = scheduler.lr_scheduler.optimizer
optimizer.step() # to avoid a pytorch warning
# Initial learning rate should be unchanged for first epoch.
assert optimizer.param_groups[0]["lr"] == 1.0
scheduler.step()
assert optimizer.param_groups[0]["lr"] == 0.5
scheduler.step()
assert optimizer.param_groups[0]["lr"] == 0.5 ** 2
scheduler.step()
assert optimizer.param_groups[0]["lr"] == 0.5 ** 3
示例6: setup_method
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def setup_method(self):
super().setup_method()
self.instances = SequenceTaggingDatasetReader().read(
self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"
)
self.vocab = Vocabulary.from_instances(self.instances)
self.model_params = Params(
{
"text_field_embedder": {
"token_embedders": {
"tokens": {"type": "embedding", "embedding_dim": 5, "sparse": True}
}
},
"encoder": {"type": "lstm", "input_size": 5, "hidden_size": 7, "num_layers": 2},
}
)
self.model = SimpleTagger.from_params(vocab=self.vocab, params=self.model_params)
示例7: test_registered_subclass
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_registered_subclass(self):
"""
Tests that registering Checkpointer subclasses works correctly.
"""
@Checkpointer.register("checkpointer_subclass")
class CheckpointerSubclass(Checkpointer):
def __init__(self, x: int, y: int) -> None:
super().__init__()
self.x = x
self.y = y
sub_inst = Checkpointer.from_params(
Params({"type": "checkpointer_subclass", "x": 1, "y": 3})
)
assert sub_inst.__class__ == CheckpointerSubclass
assert sub_inst.x == 1 and sub_inst.y == 3
示例8: test_all_datasets_read_for_vocab
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_all_datasets_read_for_vocab(self, caplog):
params = Params(
{
"dataset_reader": {"type": "train-util-test-reader"},
"train_data_path": "path-to-training-file",
"validation_data_path": "path-to-validation-file",
"test_data_path": "path-to-test-file",
}
)
_ = make_vocab_from_params(params, str(self.TEST_DIR))
log_messages = "\n".join([rec.message for rec in caplog.records])
assert "...train-util-test-reader reading from path-to-training-file" in log_messages
assert "...train-util-test-reader reading from path-to-validation-file" in log_messages
assert "...train-util-test-reader reading from path-to-test-file" in log_messages
assert "Reading training data" in log_messages
assert "Reading validation data" in log_messages
assert "Reading test data" in log_messages
示例9: test_from_params_extend_config
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_from_params_extend_config(self):
vocab_dir = self.TEST_DIR / u'vocab_save'
original_vocab = Vocabulary(non_padded_namespaces=[u"tokens"])
original_vocab.add_token_to_namespace(u"a", namespace=u"tokens")
original_vocab.save_to_files(vocab_dir)
text_field = TextField([Token(t) for t in [u"a", u"b"]],
{u"tokens": SingleIdTokenIndexer(u"tokens")})
instances = Batch([Instance({u"text": text_field})])
# If you ask to extend vocab from `directory_path`, instances must be passed
# in Vocabulary constructor, or else there is nothing to extend to.
params = Params({u"directory_path": vocab_dir, u"extend": True})
with pytest.raises(ConfigurationError):
_ = Vocabulary.from_params(params)
# If you ask to extend vocab, `directory_path` key must be present in params,
# or else there is nothing to extend from.
params = Params({u"extend": True})
with pytest.raises(ConfigurationError):
_ = Vocabulary.from_params(params, instances)
示例10: test_registrability
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_registrability(self):
class MyVocabulary(object):
@classmethod
def from_params(cls, params, instances=None):
# pylint: disable=unused-argument
return MyVocabulary()
MyVocabulary = Vocabulary.register(u'my-vocabulary')(MyVocabulary)
params = Params({u'type': u'my-vocabulary'})
instance = Instance(fields={})
vocab = Vocabulary.from_params(params=params, instances=[instance])
assert isinstance(vocab, MyVocabulary)
示例11: setUp
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def setUp(self):
super(TestOptimizer, self).setUp()
self.instances = SequenceTaggingDatasetReader().read(self.FIXTURES_ROOT / u'data' / u'sequence_tagging.tsv')
vocab = Vocabulary.from_instances(self.instances)
self.model_params = Params({
u"text_field_embedder": {
u"tokens": {
u"type": u"embedding",
u"embedding_dim": 5
}
},
u"encoder": {
u"type": u"lstm",
u"input_size": 5,
u"hidden_size": 7,
u"num_layers": 2
}
})
self.model = SimpleTagger.from_params(vocab=vocab, params=self.model_params)
示例12: setUp
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def setUp(self):
super(TestTrainer, self).setUp()
self.instances = SequenceTaggingDatasetReader().read(self.FIXTURES_ROOT / u'data' / u'sequence_tagging.tsv')
vocab = Vocabulary.from_instances(self.instances)
self.vocab = vocab
self.model_params = Params({
u"text_field_embedder": {
u"tokens": {
u"type": u"embedding",
u"embedding_dim": 5
}
},
u"encoder": {
u"type": u"lstm",
u"input_size": 5,
u"hidden_size": 7,
u"num_layers": 2
}
})
self.model = SimpleTagger.from_params(vocab=self.vocab, params=self.model_params)
self.optimizer = torch.optim.SGD(self.model.parameters(), 0.01)
self.iterator = BasicIterator(batch_size=2)
self.iterator.index_with(vocab)
示例13: remove_pretrained_embedding_params
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def remove_pretrained_embedding_params(params: Params):
if isinstance(params, Params): # The model could possibly be a string, for example.
keys = params.keys()
if "pretrained_file" in keys:
del params["pretrained_file"]
for value in params.values():
if isinstance(value, Params):
remove_pretrained_embedding_params(value)
示例14: prepare_environment
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def prepare_environment(params: Params):
"""
Sets random seeds for reproducible experiments. This may not work as expected
if you use this from within a python project in which you have already imported Pytorch.
If you use the scripts/run_model.py entry point to training models with this library,
your experiments should be reasonably reproducible. If you are using this from your own
project, you will want to call this function before importing Pytorch. Complete determinism
is very difficult to achieve with libraries doing optimized linear algebra due to massively
parallel execution, which is exacerbated by using GPUs.
# Parameters
params: `Params`
A `Params` object or dict holding the json parameters.
"""
seed = params.pop_int("random_seed", 13370)
numpy_seed = params.pop_int("numpy_seed", 1337)
torch_seed = params.pop_int("pytorch_seed", 133)
if seed is not None:
random.seed(seed)
if numpy_seed is not None:
numpy.random.seed(numpy_seed)
if torch_seed is not None:
torch.manual_seed(torch_seed)
# Seed all GPUs with the same seed if available.
if torch.cuda.is_available():
torch.cuda.manual_seed_all(torch_seed)
log_pytorch_version_info()
示例15: test_stacked_bidirectional_lstm_can_build_from_params
# 需要导入模块: from allennlp.common import params [as 别名]
# 或者: from allennlp.common.params import Params [as 别名]
def test_stacked_bidirectional_lstm_can_build_from_params(self):
params = Params(
{
"type": "stacked_bidirectional_lstm",
"input_size": 5,
"hidden_size": 9,
"num_layers": 3,
}
)
encoder = Seq2SeqEncoder.from_params(params)
assert encoder.get_input_dim() == 5
assert encoder.get_output_dim() == 18
assert encoder.is_bidirectional