本文整理汇总了Python中albumentations.Normalize方法的典型用法代码示例。如果您正苦于以下问题:Python albumentations.Normalize方法的具体用法?Python albumentations.Normalize怎么用?Python albumentations.Normalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类albumentations
的用法示例。
在下文中一共展示了albumentations.Normalize方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_training_augmentation
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def get_training_augmentation(resize_to=(320,640), crop_size=(288,576)):
print('[get_training_augmentation] crop_size:', crop_size, ', resize_to:', resize_to)
train_transform = [
albu.HorizontalFlip(p=0.5),
albu.VerticalFlip(p=0.5),
albu.ShiftScaleRotate(scale_limit=0.20, rotate_limit=10, shift_limit=0.1, p=0.5, border_mode=cv2.BORDER_CONSTANT, value=0),
albu.GridDistortion(p=0.5),
albu.Resize(*resize_to),
albu.RandomCrop(*crop_size),
albu.ChannelShuffle(),
albu.InvertImg(),
albu.ToGray(),
albu.Normalize(),
]
return albu.Compose(train_transform)
示例2: get_test_augmentation
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def get_test_augmentation(resize_to=(320,640)):
"""Add paddings to make image shape divisible by 32"""
test_transform = [
albu.Resize(*resize_to),
albu.Normalize(),
]
return albu.Compose(test_transform)
示例3: get_test_transforms
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def get_test_transforms():
return A.Compose([A.Normalize(mean=(0.485, ), std=(0.229, ))])
示例4: get_augumentation
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def get_augumentation(phase, width=512, height=512, min_area=0., min_visibility=0.):
list_transforms = []
if phase == 'train':
list_transforms.extend([
albu.augmentations.transforms.LongestMaxSize(
max_size=width, always_apply=True),
albu.PadIfNeeded(min_height=height, min_width=width,
always_apply=True, border_mode=0, value=[0, 0, 0]),
albu.augmentations.transforms.RandomResizedCrop(
height=height,
width=width, p=0.3),
albu.augmentations.transforms.Flip(),
albu.augmentations.transforms.Transpose(),
albu.OneOf([
albu.RandomBrightnessContrast(brightness_limit=0.5,
contrast_limit=0.4),
albu.RandomGamma(gamma_limit=(50, 150)),
albu.NoOp()
]),
albu.OneOf([
albu.RGBShift(r_shift_limit=20, b_shift_limit=15,
g_shift_limit=15),
albu.HueSaturationValue(hue_shift_limit=5,
sat_shift_limit=5),
albu.NoOp()
]),
albu.CLAHE(p=0.8),
albu.HorizontalFlip(p=0.5),
albu.VerticalFlip(p=0.5),
])
if(phase == 'test' or phase == 'valid'):
list_transforms.extend([
albu.Resize(height=height, width=width)
])
list_transforms.extend([
albu.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225), p=1),
ToTensor()
])
if(phase == 'test'):
return albu.Compose(list_transforms)
return albu.Compose(list_transforms, bbox_params=albu.BboxParams(format='pascal_voc', min_area=min_area,
min_visibility=min_visibility, label_fields=['category_id']))
示例5: test
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def test(*options, cfg=None, debug=False):
update_config(config, options=options, config_file=cfg)
n_classes = config.DATASET.NUM_CLASSES
# Start logging
load_log_configuration(config.LOG_CONFIG)
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
log_dir, _ = os.path.split(config.TEST.MODEL_PATH)
# load model:
model = getattr(models, config.MODEL.NAME).get_seg_model(config)
model.load_state_dict(torch.load(config.TEST.MODEL_PATH), strict=False)
model = model.to(device) # Send to GPU if available
running_metrics_overall = runningScore(n_classes)
# Augmentation
section_aug = Compose([Normalize(mean=(config.TRAIN.MEAN,), std=(config.TRAIN.STD,), max_pixel_value=1,)])
splits = ["test1", "test2"] if "Both" in config.TEST.SPLIT else [config.TEST.SPLIT]
for sdx, split in enumerate(splits):
labels = np.load(path.join(config.DATASET.ROOT, "test_once", split + "_labels.npy"))
section_file = path.join(config.DATASET.ROOT, "splits", "section_" + split + ".txt")
_write_section_file(labels, section_file)
_evaluate_split(split, section_aug, model, device, running_metrics_overall, config, debug=debug)
# FINAL TEST RESULTS:
score, class_iou = running_metrics_overall.get_scores()
logger.info("--------------- FINAL RESULTS -----------------")
logger.info(f'Pixel Acc: {score["Pixel Acc: "]:.3f}')
for cdx, class_name in enumerate(_CLASS_NAMES):
logger.info(f' {class_name}_accuracy {score["Class Accuracy: "][cdx]:.3f}')
logger.info(f'Mean Class Acc: {score["Mean Class Acc: "]:.3f}')
logger.info(f'Freq Weighted IoU: {score["Freq Weighted IoU: "]:.3f}')
logger.info(f'Mean IoU: {score["Mean IoU: "]:0.3f}')
# Save confusion matrix:
confusion = score["confusion_matrix"]
np.savetxt(path.join(log_dir, "confusion.csv"), confusion, delimiter=" ")
示例6: get_transform
# 需要导入模块: import albumentations [as 别名]
# 或者: from albumentations import Normalize [as 别名]
def get_transform(
*,
train: bool,
test_height: int,
crop_width: int,
crop_height: int,
scale_aug: float,
color_hue_aug: int,
color_sat_aug: int,
color_val_aug: int,
normalize: bool = True,
) -> Callable:
train_initial_size = 3072 # this value should not matter any more?
crop_ratio = crop_height / test_height
crop_min_max_height = tuple(
int(train_initial_size * crop_ratio * (1 + sign * scale_aug))
for sign in [-1, 1])
if train:
transforms = [
LongestMaxSizeRandomSizedCrop(
max_size=train_initial_size,
min_max_height=crop_min_max_height,
width=crop_width,
height=crop_height,
w2h_ratio=crop_width / crop_height,
),
A.HueSaturationValue(
hue_shift_limit=color_hue_aug,
sat_shift_limit=color_sat_aug,
val_shift_limit=color_val_aug,
),
A.RandomBrightnessContrast(),
A.RandomGamma(),
]
else:
transforms = [
A.LongestMaxSize(max_size=test_height),
]
if normalize:
transforms.append(A.Normalize())
transforms.extend([
ToTensor(),
])
return A.Compose(
transforms,
bbox_params={
'format': 'coco',
'min_area': 0,
'min_visibility': 0.99,
'label_fields': ['labels'],
},
)