本文整理汇总了Python中_jsonnet.evaluate_file方法的典型用法代码示例。如果您正苦于以下问题:Python _jsonnet.evaluate_file方法的具体用法?Python _jsonnet.evaluate_file怎么用?Python _jsonnet.evaluate_file使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类_jsonnet
的用法示例。
在下文中一共展示了_jsonnet.evaluate_file方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dump_best_config
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def test_dump_best_config() -> None:
with tempfile.TemporaryDirectory() as tmp_dir:
def objective(trial: optuna.Trial) -> float:
trial.suggest_uniform("DROPOUT", dropout, dropout)
executor = optuna.integration.AllenNLPExecutor(trial, input_config_file, tmp_dir)
return executor.run()
dropout = 0.5
input_config_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "example.jsonnet"
)
output_config_file = os.path.join(tmp_dir, "result.json")
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=1)
optuna.integration.allennlp.dump_best_config(input_config_file, output_config_file, study)
best_config = json.loads(_jsonnet.evaluate_file(output_config_file))
model_config = best_config["model"]
target_config = model_config["text_field_embedder"]["token_embedders"]["token_characters"]
assert target_config["dropout"] == dropout
示例2: dump_best_config
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def dump_best_config(input_config_file: str, output_config_file: str, study: optuna.Study) -> None:
"""Save JSON config file after updating with parameters from the best trial in the study.
Args:
input_config_file:
Input Jsonnet config file used with
:class:`~optuna.integration.AllenNLPExecutor`.
output_config_file:
Output JSON config file.
study:
Instance of :class:`~optuna.study.Study`.
Note that :func:`~optuna.study.Study.optimize` must have been called.
"""
_imports.check()
best_params = study.best_params
for key, value in best_params.items():
best_params[key] = str(value)
best_config = json.loads(_jsonnet.evaluate_file(input_config_file, ext_vars=best_params))
best_config = allennlp.common.params.infer_and_cast(best_config)
with open(output_config_file, "w") as f:
json.dump(best_config, f, indent=4)
示例3: _build_params
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def _build_params(self) -> Dict[str, Any]:
"""Create a dict of params for AllenNLP.
_build_params is based on allentune's train_func.
For more detail, please refer to
https://github.com/allenai/allentune/blob/master/allentune/modules/allennlp_runner.py#L34-L65
"""
params = self._environment_variables()
params.update({key: str(value) for key, value in self._params.items()})
allennlp_params = json.loads(_jsonnet.evaluate_file(self._config_file, ext_vars=params))
# allennlp_params contains a list of string or string as value values.
# Some params couldn't be casted correctly and
# infer_and_cast converts them into desired values.
return allennlp.common.params.infer_and_cast(allennlp_params)
示例4: jsonnet_load_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def jsonnet_load_file(file_name):
"""
Parses jsonnet file into jsonnet
:param file_name: Jsonnet file
:return:
"""
json_parse = json.loads(_jsonnet.evaluate_file(file_name))
return json_parse
示例5: evaluate_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def evaluate_file(filename: str, **_kwargs) -> str:
logger.warning(
f"error loading _jsonnet (this is expected on Windows), treating {filename} as plain json"
)
with open(filename, "r") as evaluation_file:
return evaluation_file.read()
示例6: from_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def from_file(
cls, params_file: str, params_overrides: str = "", ext_vars: dict = None
) -> "Params":
"""
Load a `Params` object from a configuration file.
# Parameters
params_file: `str`
The path to the configuration file to load.
params_overrides: `str`, optional
A dict of overrides that can be applied to final object.
e.g. {"model.embedding_dim": 10}
ext_vars: `dict`, optional
Our config files are Jsonnet, which allows specifying external variables
for later substitution. Typically we substitute these using environment
variables; however, you can also specify them here, in which case they
take priority over environment variables.
e.g. {"HOME_DIR": "/Users/allennlp/home"}
"""
if ext_vars is None:
ext_vars = {}
# redirect to cache, if necessary
params_file = cached_path(params_file)
ext_vars = {**_environment_variables(), **ext_vars}
file_dict = json.loads(evaluate_file(params_file, ext_vars=ext_vars))
overrides_dict = parse_overrides(params_overrides)
param_dict = with_fallback(preferred=overrides_dict, fallback=file_dict)
return cls(param_dict)
示例7: evaluate
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def evaluate(self, *args, **kwargs):
kwargs['import_callback'] = self._import_callback
kwargs['native_callbacks'] = self._native_callbacks
return json.loads(_jsonnet.evaluate_file(*args, **kwargs))
示例8: evaluate_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def evaluate_file(filename , **_kwargs) :
logger.warning("_jsonnet not loaded, treating {filename} as json")
with open(filename, u'r') as evaluation_file:
return evaluation_file.read()
示例9: from_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def from_file(params_file , params_overrides = u"") :
u"""
Load a `Params` object from a configuration file.
"""
# redirect to cache, if necessary
params_file = cached_path(params_file)
ext_vars = dict(os.environ)
file_dict = json.loads(evaluate_file(params_file, ext_vars=ext_vars))
overrides_dict = parse_overrides(params_overrides)
param_dict = with_fallback(preferred=overrides_dict, fallback=file_dict)
return Params(param_dict)
示例10: evaluate_file
# 需要导入模块: import _jsonnet [as 别名]
# 或者: from _jsonnet import evaluate_file [as 别名]
def evaluate_file(filename: str, **_kwargs) -> str:
logger.warning(f"_jsonnet not loaded, treating {filename} as json")
with open(filename, 'r') as evaluation_file:
return evaluation_file.read()