本文整理汇总了Python中Queue.get方法的典型用法代码示例。如果您正苦于以下问题:Python Queue.get方法的具体用法?Python Queue.get怎么用?Python Queue.get使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Queue
的用法示例。
在下文中一共展示了Queue.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_web
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def make_web(queue):
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
def gen():
while True:
frame = queue.get()
_, frame = cv2.imencode('.JPEG', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame.tostring() + b'\r\n')
@app.route('/video_feed')
def video_feed():
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
try:
app.run(host='0.0.0.0', port=8889)
except:
print('unable to open port')
示例2: get
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def get(self, poll_interval=5):
while True:
try:
# Using Queue.get() with a timeout is really expensive - Python uses
# busy waiting that wakes up the process every 50ms - so we switch
# to a more efficient polling method if there is no activity for
# <fast_poll_time> seconds.
if time.time() - self.last_item_time < self.fast_poll_time:
message = Queue.Queue.get(self, block=True, timeout=poll_interval)
else:
time.sleep(poll_interval)
message = Queue.Queue.get(self, block=False)
break
except Queue.Empty:
self.callback()
self.last_item_time = time.time()
return message
示例3: worker
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def worker(queue, user, size, outdir, total):
while True:
try:
photo = queue.get(False)
except Queue.Empty:
break
media_url = photo[1]
urllib3_download(media_url, size, outdir)
with lock:
global downloaded
downloaded += 1
d = {
'media_url': os.path.basename(media_url),
'user': user,
'index': downloaded + 1 if downloaded < total else total,
'total': total,
}
progress = PROGRESS_FORMATTER % d
sys.stdout.write('\r%s' % progress)
sys.stdout.flush()
示例4: _worker_manager_loop
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id):
if pin_memory:
torch.cuda.set_device(device_id)
while True:
try:
r = in_queue.get()
except Exception:
if done_event.is_set():
return
raise
if r is None:
break
if isinstance(r[1], ExceptionWrapper):
out_queue.put(r)
continue
idx, batch = r
try:
if pin_memory:
batch = pin_memory_batch(batch)
except Exception:
out_queue.put((idx, ExceptionWrapper(sys.exc_info())))
else:
out_queue.put((idx, batch))
示例5: _set_SIGCHLD_handler
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def _set_SIGCHLD_handler():
# Windows doesn't support SIGCHLD handler
if sys.platform == 'win32':
return
# can't set signal in child threads
if not isinstance(threading.current_thread(), threading._MainThread):
return
global _SIGCHLD_handler_set
if _SIGCHLD_handler_set:
return
previous_handler = signal.getsignal(signal.SIGCHLD)
if not callable(previous_handler):
previous_handler = None
def handler(signum, frame):
# This following call uses `waitid` with WNOHANG from C side. Therefore,
# Python can still get and update the process status successfully.
_error_if_any_worker_fails()
if previous_handler is not None:
previous_handler(signum, frame)
signal.signal(signal.SIGCHLD, handler)
_SIGCHLD_handler_set = True
示例6: act
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def act(self, action):
if self.nthreads > 1:
new = self.pool.map(env_step, zip(self.env, action))
else:
new = [env.step(act) for env, act in zip(self.env, action)]
reward = np.asarray([i[1] for i in new], dtype=np.float32)
done = np.asarray([i[2] for i in new], dtype=np.float32)
channels = self.state_.shape[1]//self.input_length
state = np.zeros_like(self.state_)
state[:,:-channels,:,:] = self.state_[:,channels:,:,:]
for i, (ob, env) in enumerate(zip(new, self.env)):
if ob[2]:
state[i,-channels:,:,:] = env.reset().transpose((2,0,1))
else:
state[i,-channels:,:,:] = ob[0].transpose((2,0,1))
self.state_ = state
if self.web_viz:
try:
while self.queue.qsize() > 10:
self.queue.get(False)
except queue.Empty:
pass
frame = self.visual()
self.queue.put(frame)
return reward, done
示例7: get_msg
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def get_msg(self, block=True, timeout=None):
""" Gets a message if there is one that is ready. """
if timeout is None:
# Queue.get(timeout=None) has stupid uninteruptible
# behavior, so wait for a week instead
timeout = 604800
return self._in_queue.get(block, timeout)
示例8: download_worker
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def download_worker():
while True:
url = queue.get()
download_file(url, SAVE_DIR)
queue.task_done()
# Returns the path of the specified page number
示例9: worker
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def worker(sess,model_options,model_vars,Queue,CLASS_DICT):
while True:
# print 'Queue Size', Queue.qsize()
try:
fname = Queue.get()
except:
return
start = time.time()
file_name_orig = fname.split(' ')[0].split('/')[1].strip()
file_name = file_name_orig.replace('.avi','.npz')
class_name = fname.split(' ')[0].split('/')[0].strip().lower()
class_idx = CLASS_DICT[class_name]
try:
frames = np.load(model_options['data_dir']+file_name)['arr_0']
except:
print "Couldn't Open: ",model_options['data_dir']+file_name
Queue.task_done()
continue
idx = 0
if model_options['mode'] == 'train':
idx = random.randint(0,frames.shape[0]-1)
frames = frames[idx]
tmpImg,tmpLab,num_crops = getCrops(sess,model_options,model_vars,frames,np.array((class_idx)))
if model_options['mode'] == 'train':
for j in range(num_crops):
size = model_options['example_size']
sess.run(model_vars['enqueue_op'],feed_dict={model_vars['images']:tmpImg[j*size:(j+1)*size],
model_vars['labels']:tmpLab[j:(j+1)]})
else:
sess.run(model_vars['enqueue_op'],feed_dict={model_vars['images']:tmpImg,
model_vars['labels']:tmpLab,
model_vars['names']:[[file_name_orig]]*num_crops})
Queue.task_done()
示例10: get
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def get(self, **kwargs):
"""Get an item from the queue. Kwargs are ignored (often used in standard library queue.get calls)"""
msg = self.queue.get(acknowledge=False)
if msg is None:
raise Empty
return pickle.loads(msg.body)
示例11: multiprocess_configuration
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def multiprocess_configuration(n_cpus, pax_id, base_config_kwargs, processing_queue_kwargs, output_queue_kwargs):
"""Yields configuration override dicts for multiprocessing"""
# Config overrides for child processes
common_override = dict(pax=dict(autorun=True, show_progress_bar=False),
DEFAULT=dict(pax_id=pax_id))
input_override = dict(pax=dict(plugin_group_names=['input', 'output'],
encoder_plugin=None,
decoder_plugin=None,
output='Queues.PushToQueue'),
Queues=dict(**processing_queue_kwargs))
worker_override = {'pax': dict(input='Queues.PullFromQueue',
output='Queues.PushToQueue',
event_numbers_file=None,
events_to_process=None),
# PullFromQueue can't have a timeout in the workers, see #444
'Queues.PullFromQueue': dict(timeout_after_sec=float('inf'),
**processing_queue_kwargs),
'Queues.PushToQueue': dict(preserve_ids=True,
many_to_one=True,
**output_queue_kwargs)}
output_override = dict(pax=dict(plugin_group_names=['input', 'output'],
encoder_plugin=None,
decoder_plugin=None,
event_numbers_file=None,
events_to_process=None,
input='Queues.PullFromQueue'),
Queues=dict(ordered_pull=True,
**output_queue_kwargs))
overrides = [('input', input_override)] + [('worker', worker_override)] * n_cpus + [('output', output_override)]
for worker_type, worker_overide in overrides:
new_conf = deepcopy(base_config_kwargs)
new_conf['config_dict'] = combine_configs(new_conf.get('config_dict'),
common_override,
worker_overide)
yield worker_type, new_conf
示例12: check_local_processes_while_remote_processing
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def check_local_processes_while_remote_processing(running_paxes, crash_fanout, terminate_host_on_crash=False):
"""Check on locally running paxes in running_paxes, returns list of remaining running pax processes.
- Remove any paxes that have exited normally
- If a pax has crashed, push a message to the crash fanout to terminate all paxes with the same id
- Look for crash fanout messages from other processes, and terminate local paxes with the same id
- terminate_host_on_crash: if True, raise exception in the host process if a pax crash is detected in
a pax chain we're participating in. Do NOT use in a host process that can host multiple pax chains! We will not
check the presence of other pax chains and terminate them too!
"""
p_by_status = group_by_status(running_paxes)
running_paxes = p_by_status['running']
# If any of our own paxes crashed, send a message to the crash fanout
# This will inform everyone connected to the server (including ourselves, on the next iteration)
for crashed_w in p_by_status['crashed']:
pax_id = crashed_w.pax_id
exctype, traceb = get_exception_from_process(p_by_status['crashed'][0])
print("Pax %s crashed!\nDumping exception traceback:\n\n%s\n\nNotifying crash fanout." % (
pax_id, format_exception_dump(traceb)
))
crash_fanout.put((pax_id, exctype, traceb))
running_paxes, _ = terminate_paxes_with_id(running_paxes, pax_id)
if terminate_host_on_crash:
raise exctype("Pax %s crashed! Traceback:\n %s" % (pax_id, format_exception_dump(traceb)))
# If any of the remote paxes crashed, we will learn about it from the crash fanout.
try:
pax_id, exctype, traceb = crash_fanout.get()
print("Remote crash notification for pax %s.\n"
"Remote exception traceback dump:\n\n%s\n.Terminating paxes with id %s." % (
pax_id, format_exception_dump(traceb), pax_id))
running_paxes, n_terminated = terminate_paxes_with_id(running_paxes, pax_id)
if n_terminated > 0 and terminate_host_on_crash:
raise exctype("Pax %s crashed! Traceback:\n %s" % (pax_id, format_exception_dump(traceb)))
except Empty:
pass
return running_paxes
示例13: get_exception_from_process
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def get_exception_from_process(p):
crdict = p.shared_dict
try:
exc_type = eval(crdict.get('exception_type', 'UnknownPropagatedException'),
exceptions.__dict__)
except NameError:
exc_type = exceptions.UnknownPropagatedException
traceb = crdict.get('traceback', 'No traceback reported')
return exc_type, traceb
示例14: run
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def run(self):
while self.alive.isSet():
try:
# Queue.get with timeout to allow checking self.alive
cmd = self.cmd_q.get(True, 0.1)
self.handlers[cmd.type](cmd)
except Queue.Empty as e:
continue
示例15: _reduction_thread_fn
# 需要导入模块: import Queue [as 别名]
# 或者: from Queue import get [as 别名]
def _reduction_thread_fn(queue, group_id, device_ids, reduction_streams, nccl_streams):
def _process_batch():
dev_grad_batch, dev_events, job_event = queue.get()
dev_coalesced = []
# Coalesce the tensors on all devices and start a local reduction
for dev_id, grad_batch, event, stream in zip(device_ids, dev_grad_batch, dev_events, reduction_streams):
with torch.cuda.device(dev_id), torch.cuda.stream(stream):
stream.wait_event(event)
coalesced = _flatten_tensors(grad_batch)
dev_coalesced.append(coalesced)
# Wait for all copies to complete before starting the NCCL kernel
for stream in reduction_streams:
stream.synchronize()
nccl.reduce(dev_coalesced, root=0, streams=nccl_streams)
# From now on we're only going to work on the first device (from device_ids)
grad_batch = dev_grad_batch[0]
coalesced = dev_coalesced[0]
reduce_stream = reduction_streams[0]
with torch.cuda.stream(reduce_stream):
reduce_stream.wait_stream(nccl_streams[0])
coalesced /= dist.get_world_size()
dist.all_reduce(coalesced, group=group_id)
for grad, reduced in zip(grad_batch, _unflatten_tensors(coalesced, grad_batch)):
grad.copy_(reduced)
job_event.set()
with torch.cuda.device(device_ids[0]):
while True:
_process_batch() # just to have a clear scope