当前位置: 首页>>代码示例>>Python>>正文


Python ImageEnhance.Contrast方法代码示例

本文整理汇总了Python中PIL.ImageEnhance.Contrast方法的典型用法代码示例。如果您正苦于以下问题:Python ImageEnhance.Contrast方法的具体用法?Python ImageEnhance.Contrast怎么用?Python ImageEnhance.Contrast使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PIL.ImageEnhance的用法示例。


在下文中一共展示了ImageEnhance.Contrast方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: adjust_contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        PIL Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img 
开发者ID:miraiaroha,项目名称:ACAN,代码行数:20,代码来源:transforms.py

示例2: autocaptcha

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def autocaptcha(path):
    """Auto identify captcha in path.

    Use pytesseract to identify captcha.

    Args:
        path: string, image path.

    Returns:
        string, OCR identified code.
    """
    im = Image.open(path)

    im = im.convert('L')
    im = ImageEnhance.Contrast(im)
    im = im.enhance(3)
    img2 = Image.new('RGB', (150, 60), (255, 255, 255))
    img2.paste(im.copy(), (25, 10))

    # TODO: add auto environment detect
    return pytesseract.image_to_string(img2) 
开发者ID:MXWXZ,项目名称:sjtu-automata,代码行数:23,代码来源:autocaptcha.py

示例3: adjust_contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an mage.
    Args:
        img (numpy ndarray): numpy ndarray to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.
    Returns:
        numpy ndarray: Contrast adjusted image.
    """
    # much faster to use the LUT construction than anything else I've tried
    # it's because you have to change dtypes multiple times
    if not _is_numpy_image(img):
        raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
    table = np.array([ (i-74)*contrast_factor+74 for i in range (0,256)]).clip(0,255).astype('uint8')
    # enhancer = ImageEnhance.Contrast(img)
    # img = enhancer.enhance(contrast_factor)
    if img.shape[2] == 1:
        return cv2.LUT(img, table)[:,:,np.newaxis]
    else:
        return cv2.LUT(img, table) 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:23,代码来源:opencv_functional.py

示例4: _fry

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def _fry(img):
		e = ImageEnhance.Sharpness(img)
		img = e.enhance(100)
		e = ImageEnhance.Contrast(img)
		img = e.enhance(100)
		e = ImageEnhance.Brightness(img)
		img = e.enhance(.27)
		r, b, g = img.split()
		e = ImageEnhance.Brightness(r)
		r = e.enhance(4)
		e = ImageEnhance.Brightness(g)
		g = e.enhance(1.75)
		e = ImageEnhance.Brightness(b)
		b = e.enhance(.6)
		img = Image.merge('RGB', (r, g, b))
		e = ImageEnhance.Brightness(img)
		img = e.enhance(1.5)
		temp = BytesIO()
		temp.name = 'deepfried.png'
		img.save(temp)
		temp.seek(0)
		return temp 
开发者ID:Flame442,项目名称:FlameCogs,代码行数:24,代码来源:deepfry.py

示例5: image_contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def image_contrast(self, factor: int, extension: str = "png"):
        """Change image contrast
        
        Args:
            factor (int): Factor to increase the contrast by
            extension (str, optional): File extension of loaded image. Defaults to "png"
        
        Returns:
            Chepy: The Chepy object. 
        """
        image = Image.open(self._load_as_file())
        image = self._force_rgb(image)
        fh = io.BytesIO()
        enhanced = ImageEnhance.Contrast(image).enhance(factor)
        enhanced.save(fh, extension)
        self.state = fh.getvalue()
        return self 
开发者ID:securisec,项目名称:chepy,代码行数:19,代码来源:multimedia.py

示例6: modifyImageBscc

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def modifyImageBscc(imageData, brightness, sharpness, contrast, color):
    """Update with brightness, sharpness, contrast and color."""

    brightnessMod = ImageEnhance.Brightness(imageData)
    imageData = brightnessMod.enhance(brightness)

    sharpnessMod = ImageEnhance.Sharpness(imageData)
    imageData = sharpnessMod.enhance(sharpness)

    contrastMod = ImageEnhance.Contrast(imageData)
    imageData = contrastMod.enhance(contrast)

    colorMod = ImageEnhance.Color(imageData)
    imageData = colorMod.enhance(color)

    return imageData 
开发者ID:BerkeleyLearnVerify,项目名称:VerifAI,代码行数:18,代码来源:generator.py

示例7: __getitem__

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def __getitem__(self, index):
        im, xpatch, ypatch, rotation, flip, enhance = np.unravel_index(index, self.shape)

        with Image.open(self.names[im]) as img:
            extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
            patch = extractor.extract_patch((xpatch, ypatch))

            if rotation != 0:
                patch = patch.rotate(rotation * 90)

            if flip != 0:
                patch = patch.transpose(Image.FLIP_LEFT_RIGHT)

            if enhance != 0:
                factors = np.random.uniform(.5, 1.5, 3)
                patch = ImageEnhance.Color(patch).enhance(factors[0])
                patch = ImageEnhance.Contrast(patch).enhance(factors[1])
                patch = ImageEnhance.Brightness(patch).enhance(factors[2])

            label = self.labels[self.names[im]]
            return transforms.ToTensor()(patch), label 
开发者ID:ImagingLab,项目名称:ICIAR2018,代码行数:23,代码来源:datasets.py

示例8: adjust_contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.
    Args:
    img (PIL Image): PIL Image to be adjusted.
    contrast_factor (float): How much to adjust the contrast. Can be any
    non negative number. 0 gives a solid gray image, 1 gives the
    original image while 2 increases the contrast by a factor of 2.
    Returns:
    PIL Image: Contrast adjusted image.
    """
    if not is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img 
开发者ID:almazan,项目名称:deep-image-retrieval,代码行数:18,代码来源:transforms_tools.py

示例9: account_by_qr

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def account_by_qr(qr_file):
	qr = qrtools.QR()
	qr.decode(qr_file)
	# Try to increase contrast if not recognized
	if ('xrb_' not in qr.data):
		image = Image.open(qr_file)
		contrast = ImageEnhance.Contrast(image)
		image = contrast.enhance(7)
		image.save('{0}'.format(qr_file.replace('.jpg', '_.jpg')), 'JPEG')
		qr2 = qrtools.QR()
		qr2.decode('{0}'.format(qr_file.replace('.jpg', '_.jpg')))
		#print(qr2.data)
		qr = qr2
	returning = qr.data.replace('nano:', '').replace('xrb:', '').replace('nano://', '').replace('raiblocks://', '').replace('raiblocks:', '').split('?')
	# parsing amount
	if (len(returning) > 1):
		if ('amount=' in returning[1]):
			returning[1] = returning[1].replace('amount=', '')
			# don't use empty
			if (len(returning[1]) == 0):
				returning.pop()
		else:
			returning.pop()
	return returning 
开发者ID:SergiySW,项目名称:NanoWalletBot,代码行数:26,代码来源:common_qr.py

示例10: produce

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def produce(txt,img,ver=5,err_crt = qrcode.constants.ERROR_CORRECT_H,bri = 1.0, cont = 1.0,\
        colourful = False, rgba = (0,0,0,255),pixelate = False):
    """Produce QR code

    :txt: QR text
    :img: Image path / Image object
    :ver: QR version
    :err_crt: QR error correct
    :bri: Brightness enhance
    :cont: Contrast enhance
    :colourful: If colourful mode
    :rgba: color to replace black
    :pixelate: pixelate
    :returns: list of produced image

    """
    if type(img) is Image.Image:
        pass
    elif type(img) is str:
        img = Image.open(img)
    else:
        return []
    frames = [produce_impl(txt,frame.copy(),ver,err_crt,bri,cont,colourful,rgba,pixelate) for frame in ImageSequence.Iterator(img)]
    return frames 
开发者ID:chinuno-usami,项目名称:CuteR,代码行数:26,代码来源:CuteR.py

示例11: adjust_contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.
    Args:
        img (PIL.Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.
    Returns:
        PIL.Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img 
开发者ID:YuanXue1993,项目名称:SegAN,代码行数:18,代码来源:transform.py

示例12: img_test

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def img_test(i, type):
    """
    visiualize certain image by showing all corresponding images.
    :param i: which image
    :param type: train, test or validation
    """
    img = Image.open(os.path.join(p, 'cls_and_det', type, 'img{}'.format(i), 'img{}.bmp'.format(i)))
    imgd = Image.open(
       os.path.join(p, 'cls_and_det', type, 'img{}'.format(i), 'img{}_detection.bmp'.format(i)))
    imgc = Image.open(
       os.path.join(p, 'cls_and_det', type, 'img{}'.format(i), 'img{}_classification.bmp'.format(i)))
    imgv = Image.open(
       os.path.join(p, 'cls_and_det', type, 'img{}'.format(i), 'img{}_verifiy_classification.bmp'.format(i)))
    imgz = Image.open(
       os.path.join(p, 'cls_and_det', type, 'img{}'.format(i), 'img{}_verifiy_detection.bmp'.format(i)))
    contrast = ImageEnhance.Contrast(imgd)
    contrast2 = ImageEnhance.Contrast(imgc)
    img.show(img)
    imgv.show(imgv)
    imgz.show(imgz)
    contrast.enhance(20).show(imgd)
    contrast2.enhance(20).show(imgc) 
开发者ID:zhuyiche,项目名称:sfcn-opi,代码行数:24,代码来源:util.py

示例13: __init__

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def __init__(self):
        self.policies = [
            ['Invert', 0.1, 7, 'Contrast', 0.2, 6],
            ['Rotate', 0.7, 2, 'TranslateX', 0.3, 9],
            ['Sharpness', 0.8, 1, 'Sharpness', 0.9, 3],
            ['ShearY', 0.5, 8, 'TranslateY', 0.7, 9],
            ['AutoContrast', 0.5, 8, 'Equalize', 0.9, 2],
            ['ShearY', 0.2, 7, 'Posterize', 0.3, 7],
            ['Color', 0.4, 3, 'Brightness', 0.6, 7],
            ['Sharpness', 0.3, 9, 'Brightness', 0.7, 9],
            ['Equalize', 0.6, 5, 'Equalize', 0.5, 1],
            ['Contrast', 0.6, 7, 'Sharpness', 0.6, 5],
            ['Color', 0.7, 7, 'TranslateX', 0.5, 8],
            ['Equalize', 0.3, 7, 'AutoContrast', 0.4, 8],
            ['TranslateY', 0.4, 3, 'Sharpness', 0.2, 6],
            ['Brightness', 0.9, 6, 'Color', 0.2, 8],
            ['Solarize', 0.5, 2, 'Invert', 0, 0.3],
            ['Equalize', 0.2, 0, 'AutoContrast', 0.6, 0],
            ['Equalize', 0.2, 8, 'Equalize', 0.6, 4],
            ['Color', 0.9, 9, 'Equalize', 0.6, 6],
            ['AutoContrast', 0.8, 4, 'Solarize', 0.2, 8],
            ['Brightness', 0.1, 3, 'Color', 0.7, 0],
            ['Solarize', 0.4, 5, 'AutoContrast', 0.9, 3],
            ['TranslateY', 0.9, 9, 'TranslateY', 0.7, 9],
            ['AutoContrast', 0.9, 2, 'Solarize', 0.8, 3],
            ['Equalize', 0.8, 8, 'Invert', 0.1, 3],
            ['TranslateY', 0.7, 9, 'AutoContrast', 0.9, 1],
        ] 
开发者ID:ngessert,项目名称:isic2019,代码行数:30,代码来源:auto_augment.py

示例14: contrast

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def contrast(img, magnitude):
    magnitudes = np.linspace(0.1, 1.9, 11)
    img = ImageEnhance.Contrast(img).enhance(random.uniform(magnitudes[magnitude], magnitudes[magnitude+1]))
    return img 
开发者ID:ngessert,项目名称:isic2019,代码行数:6,代码来源:auto_augment.py

示例15: __call__

# 需要导入模块: from PIL import ImageEnhance [as 别名]
# 或者: from PIL.ImageEnhance import Contrast [as 别名]
def __call__(self, image, label):


        #aug blur
        if random.random() > set_ratio:
            select = random.random()
            if select < 0.3:
                kernalsize = random.choice([3, 5])
                image = cv2.GaussianBlur(image, (kernalsize, kernalsize), 0)
            elif select < 0.6:
                kernalsize = random.choice([3, 5])
                image = cv2.medianBlur(image, kernalsize)
            else:
                kernalsize = random.choice([3, 5])
                image = cv2.blur(image, (kernalsize, kernalsize))

        # aug noise
        if random.random() > set_ratio:
            mu = 0
            sigma = random.random() * 10.0
            image = np.array(image, dtype=np.float32)
            image += np.random.normal(mu, sigma, image.shape)
            image[image > 255] = 255
            image[image < 0] = 0

        # aug_color
        if random.random() > set_ratio:

            random_factor = np.random.randint(4, 17) / 10.
            color_image = ImageEnhance.Color(image).enhance(random_factor)
            random_factor = np.random.randint(4, 17) / 10.
            brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor)
            random_factor = np.random.randint(6, 15) / 10.
            contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor)
            random_factor = np.random.randint(8, 13) / 10.
            image = ImageEnhance.Sharpness(contrast_image).enhance(random_factor)

        return np.array(image), label 
开发者ID:clovaai,项目名称:ext_portrait_segmentation,代码行数:40,代码来源:CVTransforms.py


注:本文中的PIL.ImageEnhance.Contrast方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。