本文整理汇总了Python中ConfigSpace.Configuration方法的典型用法代码示例。如果您正苦于以下问题:Python ConfigSpace.Configuration方法的具体用法?Python ConfigSpace.Configuration怎么用?Python ConfigSpace.Configuration使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ConfigSpace
的用法示例。
在下文中一共展示了ConfigSpace.Configuration方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: objective_function
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def objective_function(self, config, budget=100, **kwargs):
assert 0 < budget <= 100 # check whether budget is in the correct bounds
i = self.rng.randint(4)
if type(config) == ConfigSpace.Configuration:
k = json.dumps(config.get_dictionary(), sort_keys=True)
else:
k = json.dumps(config, sort_keys=True)
valid = self.data[k]["valid_mse"][i]
runtime = self.data[k]["runtime"][i]
time_per_epoch = runtime / 100 # divide by the maximum number of epochs
rt = time_per_epoch * budget
self.X.append(config)
self.y.append(valid[budget - 1])
self.c.append(rt)
return valid[budget - 1], rt
示例2: objective_function_learning_curve
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def objective_function_learning_curve(self, config, budget=100):
assert 0 < budget <= 100 # check whether budget is in the correct bounds
index = self.rng.randint(4)
if type(config) == ConfigSpace.Configuration:
k = json.dumps(config.get_dictionary(), sort_keys=True)
else:
k = json.dumps(config, sort_keys=True)
lc = [self.data[k]["valid_mse"][index][i] for i in range(budget)]
runtime = self.data[k]["runtime"][index]
time_per_epoch = runtime / 100 # divide by the maximum number of epochs
rt = [time_per_epoch * (i + 1) for i in range(budget)]
self.X.append(config)
self.y.append(lc[-1])
self.c.append(rt[-1])
return lc, rt
示例3: objective_function_deterministic
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def objective_function_deterministic(self, config, budget=100, index=0, **kwargs):
assert 0 < budget <= 100 # check whether budget is in the correct bounds
if type(config) == ConfigSpace.Configuration:
k = json.dumps(config.get_dictionary(), sort_keys=True)
else:
k = json.dumps(config, sort_keys=True)
valid = self.data[k]["valid_mse"][index]
runtime = self.data[k]["runtime"][index]
time_per_epoch = runtime / 100 # divide by the maximum number of epochs
rt = time_per_epoch * budget
self.X.append(config)
self.y.append(valid[budget - 1])
self.c.append(rt)
return valid[budget - 1], rt
示例4: compute
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def compute(self, config, budget, **kwargs):
if self.config_as_array:
c = CS.Configuration(self.configspace, values=config)
else:
c = config
kwargs = {self.budget_name: self.budget_preprocessor(budget)}
res = self.benchmark.objective_function(c, **kwargs)
if self.measure_test_loss:
del kwargs[self.budget_name]
res['test_loss'] = self.benchmark.objective_function_test(c, **kwargs)['function_value']
return({
'loss': res['function_value'],
'info': res
})
示例5: update
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def update(self, config: CS.Configuration, reward: float, resource: int):
"""
Registers new datapoint at config, with reward and resource.
Note that in general, config should previously have been registered as
pending (register_pending). If so, it is switched from pending
to labeled. If not, it is considered directly labeled.
:param config:
:param reward:
:param resource:
"""
config_ext = self.configspace_ext.get(config, resource)
crit_val = self.map_reward(reward)
self.state_transformer.label_candidate(CandidateEvaluation(
candidate=config_ext, metrics=dictionarize_objective(crit_val)))
if self.debug_log is not None:
config_id = self.debug_log.config_id(config_ext)
msg = "Update for config_id {}: reward = {}, crit_val = {}".format(
config_id, reward, crit_val)
logger.info(msg)
示例6: cleanup_pending
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def cleanup_pending(self, config: CS.Configuration):
"""
Removes all pending candidates whose configuration (i.e., lacking the
resource attribute) is equal to config.
This should be called after an evaluation terminates. For various
reasons (e.g., termination due to convergence), pending candidates
for this evaluation may still be present.
It is also called for a failed evaluation.
:param config: See above
"""
config_dct = config.get_dictionary()
def filter_pred(x: PendingEvaluation) -> bool:
x_dct = self.configspace_ext.remove_resource(
x.candidate, as_dict=True)
return (x_dct != config_dct)
self.state_transformer.filter_pending_evaluations(filter_pred)
示例7: draw_random_candidate
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def draw_random_candidate(
blacklisted_candidates: Set[CS.Configuration],
configspace_ext: ExtendedConfiguration,
random_state: np.random.RandomState,
target_resource: int) -> (CS.Configuration, CS.Configuration):
config, config_ext = None, None
for _ in range(GET_CONFIG_RANDOM_RETRIES):
_config = configspace_ext.hp_ranges.random_candidate(random_state)
# Test whether this config has already been considered
_config_ext = configspace_ext.remap_resource(
_config, target_resource)
if _config_ext not in blacklisted_candidates:
config = _config
config_ext = _config_ext
break
if config is None:
raise AssertionError(
"Failed to sample a configuration not already chosen "
"before. Maybe there are no free configurations left? "
"The blacklist size is {}".format(len(blacklisted_candidates)))
return config, config_ext
示例8: decode_state
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def decode_state(enc_state: dict, hp_ranges: HyperparameterRanges_CS) \
-> TuningJobState:
assert isinstance(hp_ranges, HyperparameterRanges_CS), \
"Must have hp_ranges of HyperparameterRanges_CS type"
config_space = hp_ranges.config_space
def to_cs(x):
return CS.Configuration(config_space, values=x)
candidate_evaluations = [
CandidateEvaluation(to_cs(x['candidate']), x['metrics'])
for x in enc_state['candidate_evaluations']]
failed_candidates = [to_cs(x) for x in enc_state['failed_candidates']]
pending_evaluations = [
PendingEvaluation(to_cs(x)) for x in enc_state['pending_evaluations']]
return TuningJobState(
hp_ranges=hp_ranges,
candidate_evaluations=candidate_evaluations,
failed_candidates=failed_candidates,
pending_evaluations=pending_evaluations)
示例9: from_ndarray
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def from_ndarray(self, cand_ndarray: np.ndarray) -> Candidate:
assert cand_ndarray.size == self._ndarray_size, \
"Internal vector [{}] must have size {}".format(
cand_ndarray, self._ndarray_size)
cand_ndarray = cand_ndarray.reshape((-1,))
assert cand_ndarray.min() >= 0. and cand_ndarray.max() <= 1., \
"Internal vector [{}] must have entries in [0, 1]".format(
cand_ndarray)
# Deal with categoricals by using argmax
srcvec = np.zeros(self.__len__(), dtype=cand_ndarray.dtype)
srcvec.put(
self.numer_src, cand_ndarray.take(self.numer_trg, mode='clip'),
mode='clip')
for srcpos, trgpos, card in zip(
self.categ_src, self.categ_trg, self.categ_card):
maxpos = cand_ndarray[trgpos:(trgpos + card)].argmax()
srcvec[srcpos] = maxpos
# Rest is dealt with by CS.Configuration
return CS.Configuration(self.config_space, vector=srcvec)
示例10: objective_function_test
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def objective_function_test(self, config, **kwargs):
if type(config) == ConfigSpace.Configuration:
k = json.dumps(config.get_dictionary(), sort_keys=True)
else:
k = json.dumps(config, sort_keys=True)
test = np.mean(self.data[k]["final_test_error"])
runtime = np.mean(self.data[k]["runtime"])
return test, runtime
示例11: compute_reward
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def compute_reward(self, sample):
config = ConfigSpace.Configuration(b.get_configuration_space(), vector=sample)
y, c = self.bench.objective_function(config)
fitness = 1 - float(y)
return fitness
示例12: __init__
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def __init__(self, configspace, top_n_percent=10, update_after_n_points=50,
min_points_in_model = None,
*kwargs):
"""
Fits for each given budget a kernel density estimator on the best N percent of the
evaluated configurations on this budget.
Parameters:
-----------
configspace: ConfigSpace
Configuration space object
top_n_percent: int
Determines the percentile of configurations that will be used as training data
for the kernel density estimator, e.g if set to 10 the 10% best configurations will be considered
for training.
update_after_n_points: int
Specifies after how many new observed points the kernel density will be retrained.
min_points_in_model: int
minimum number of datapoints needed to fit a model
"""
super(KernelDensityEstimator, self).__init__(**kwargs)
self.top_n_percent = top_n_percent
self.update_after_n_points = update_after_n_points
self.configspace = configspace
self.min_points_in_model = min_points_in_model
if min_points_in_model is None:
self.min_points_in_model = len(self.configspace.get_hyperparameters())+1
# TODO: so far we only consider continuous configuration spaces
self.var_type = "c" * len(self.configspace.get_hyperparameters())
self.configs = dict()
self.losses = dict()
self.kde_models = dict()
示例13: get_config
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def get_config(self, budget):
"""
Function to sample a new configuration
This function is called inside Hyperband to query a new configuration
Parameters:
-----------
budget: float
the budget for which this configuration is scheduled
returns: config
should return a valid configuration
"""
# No observations available for this budget sample from the prior
if len(self.kde_models.keys()) == 0:
return self.configspace.sample_configuration().get_dictionary()
# If we haven't seen anything with this budget, we sample from the kde trained on the highest budget
if budget not in self.kde_models.keys():
budget = sorted(self.kde_models.keys())[-1]
# TODO: This only works in continuous space and with gaussian kernels
kde = self.kde_models[budget]
idx = np.random.randint(0, len(self.kde_models[budget].data))
vector = [sps.truncnorm.rvs(-m/bw,(1-m)/bw, loc=m, scale=bw) for m,bw in zip(self.kde_models[budget].data[idx], kde.bw)]
if np.any(np.array(vector)>1) or np.any(np.array(vector)<0):
raise RuntimeError("truncated normal sampling problems!")
sample = ConfigSpace.Configuration(self.configspace, vector=vector)
return sample.get_dictionary(), {}
示例14: get_config
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def get_config(self, budget):
"""
function to sample a new configuration
This function is called inside Hyperband to query a new configuration
Parameters:
-----------
budget: float
the budget for which this configuration is scheduled
returns: config
should return a valid configuration
"""
self.lock.acquire()
if not self.is_trained:
c = self.config_space.sample_configuration().get_array()
else:
candidates = np.array([self.config_space.sample_configuration().get_array()
for _ in range(self.n_candidates)])
# We are only interested on the asymptotic value
projected_candidates = np.concatenate((candidates, np.ones([self.n_candidates, 1])), axis=1)
# Compute the upper confidence bound of the function at the asymptote
m, v = self.model.predict(projected_candidates)
ucb_values = m + self.delta * np.sqrt(v)
print(ucb_values)
# Sample a configuration based on the ucb values
p = np.ones(self.n_candidates) * (ucb_values / np.sum(ucb_values))
idx = np.random.choice(self.n_candidates, 1, False, p)
c = candidates[idx][0]
config = ConfigSpace.Configuration(self.config_space, vector=c)
self.lock.release()
return config.get_dictionary(), {}
示例15: get_fANOVA_data
# 需要导入模块: import ConfigSpace [as 别名]
# 或者: from ConfigSpace import Configuration [as 别名]
def get_fANOVA_data(self, config_space, budgets=None):
import numpy as np
import ConfigSpace as CS
id2conf = self.get_id2config_mapping()
if budgets is None:
budgets = self.HB_config['budgets']
if len(budgets)>1:
config_space.add_hyperparameter(CS.UniformFloatHyperparameter('budget', min(budgets), max(budgets), log=True))
hp_names = list(map( lambda hp: hp.name, config_space.get_hyperparameters()))
all_runs = self.get_all_runs(only_largest_budget=False)
all_runs=list(filter( lambda r: r.budget in budgets, all_runs))
X = []
y = []
for r in all_runs:
if r.loss is None: continue
config = id2conf[r.config_id]['config']
if len(budgets)>1:
config['budget'] = r.budget
config = CS.Configuration(config_space, config)
X.append([config[n] for n in hp_names])
y.append(r.loss)
return(np.array(X), np.array(y), config_space)