本文整理汇总了Python中zipline.transforms.utils.StatefulTransform类的典型用法代码示例。如果您正苦于以下问题:Python StatefulTransform类的具体用法?Python StatefulTransform怎么用?Python StatefulTransform使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StatefulTransform类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
def run(self, source=None, start=None, end=None):
"""Run the algorithm.
:Arguments:
source : can be either:
- pandas.Panel
- pandas.DataFrame
- zipline source
- list of zipline sources
If pandas.DataFrame is provided, it must have the
following structure:
* column names must consist of ints representing the
different sids
* index must be DatetimeIndex
* array contents should be price info.
:Returns:
daily_stats : pandas.DataFrame
Daily performance metrics such as returns, alpha etc.
"""
if source is None:
assert(self.sources)
else:
self.set_sources(source, start, end)
# Create transforms by wrapping them into StatefulTransforms
self.transforms = []
for namestring, trans_descr in self.registered_transforms.iteritems():
sf = StatefulTransform(
trans_descr['class'],
*trans_descr['args'],
**trans_descr['kwargs']
)
sf.namestring = namestring
self.transforms.append(sf)
environment = create_trading_environment(
start=self.start_datetime,
end=self.end_datetime,
capital_base=self.capital_base
)
# create transforms and zipline
self.gen = self._create_generator(environment)
# loop through simulated_trading, each iteration returns a
# perf ndict
perfs = list(self.gen)
# convert perf ndict to pandas dataframe
daily_stats = self._create_daily_stats(perfs)
return daily_stats
示例2: run
def run(self, source, sim_params=None, benchmark_return_source=None):
"""Run the algorithm.
:Arguments:
source : can be either:
- pandas.DataFrame
- zipline source
- list of zipline sources
If pandas.DataFrame is provided, it must have the
following structure:
* column names must consist of ints representing the
different sids
* index must be DatetimeIndex
* array contents should be price info.
:Returns:
daily_stats : pandas.DataFrame
Daily performance metrics such as returns, alpha etc.
"""
if isinstance(source, (list, tuple)):
assert self.sim_params is not None or sim_params is not None, \
"""When providing a list of sources, \
sim_params have to be specified as a parameter
or in the constructor."""
elif isinstance(source, pd.DataFrame):
# if DataFrame provided, wrap in DataFrameSource
source = DataFrameSource(source)
elif isinstance(source, pd.Panel):
source = DataPanelSource(source)
if not isinstance(source, (list, tuple)):
self.sources = [source]
else:
self.sources = source
# Check for override of sim_params.
# If it isn't passed to this function,
# use the default params set with the algorithm.
# Else, we create simulation parameters using the start and end of the
# source provided.
if not sim_params:
if not self.sim_params:
start = source.start
end = source.end
sim_params = create_simulation_parameters(
start=start,
end=end,
capital_base=self.capital_base
)
else:
sim_params = self.sim_params
# Create transforms by wrapping them into StatefulTransforms
self.transforms = []
for namestring, trans_descr in self.registered_transforms.iteritems():
sf = StatefulTransform(
trans_descr['class'],
*trans_descr['args'],
**trans_descr['kwargs']
)
sf.namestring = namestring
self.transforms.append(sf)
# create transforms and zipline
self.gen = self._create_generator(sim_params)
# loop through simulated_trading, each iteration returns a
# perf dictionary
perfs = []
for perf in self.gen:
perfs.append(perf)
# convert perf dict to pandas dataframe
daily_stats = self._create_daily_stats(perfs)
return daily_stats
示例3: run
def run(self, source, start=None, end=None):
"""Run the algorithm.
:Arguments:
source : can be either:
- pandas.DataFrame
- zipline source
- list of zipline sources
If pandas.DataFrame is provided, it must have the
following structure:
* column names must consist of ints representing the
different sids
* index must be DatetimeIndex
* array contents should be price info.
:Returns:
daily_stats : pandas.DataFrame
Daily performance metrics such as returns, alpha etc.
"""
if isinstance(source, (list, tuple)):
assert start is not None and end is not None, \
"""When providing a list of sources, \
start and end date have to be specified."""
elif isinstance(source, pd.DataFrame):
# if DataFrame provided, wrap in DataFrameSource
source = DataFrameSource(source)
elif isinstance(source, pd.Panel):
source = DataPanelSource(source)
# If values not set, try to extract from source.
if start is None:
start = source.start
if end is None:
end = source.end
if not isinstance(source, (list, tuple)):
self.sources = [source]
else:
self.sources = source
# Create transforms by wrapping them into StatefulTransforms
self.transforms = []
for namestring, trans_descr in self.registered_transforms.iteritems():
sf = StatefulTransform(
trans_descr['class'],
*trans_descr['args'],
**trans_descr['kwargs']
)
sf.namestring = namestring
self.transforms.append(sf)
environment = create_trading_environment(
start=start,
end=end,
capital_base=self.capital_base
)
# create transforms and zipline
self.gen = self._create_generator(environment)
# loop through simulated_trading, each iteration returns a
# perf ndict
perfs = list(self.gen)
# convert perf ndict to pandas dataframe
daily_stats = self._create_daily_stats(perfs)
return daily_stats
示例4: run
def run(self, source, overwrite_sim_params=True,
benchmark_return_source=None):
"""Run the algorithm.
:Arguments:
source : can be either:
- pandas.DataFrame
- zipline source
- list of sources
If pandas.DataFrame is provided, it must have the
following structure:
* column names must consist of ints representing the
different sids
* index must be DatetimeIndex
* array contents should be price info.
:Returns:
daily_stats : pandas.DataFrame
Daily performance metrics such as returns, alpha etc.
"""
if isinstance(source, list):
if overwrite_sim_params:
warnings.warn("""List of sources passed, will not attempt to extract sids, and start and end
dates. Make sure to set the correct fields in sim_params passed to
__init__().""", UserWarning)
overwrite_sim_params = False
elif isinstance(source, pd.DataFrame):
# if DataFrame provided, wrap in DataFrameSource
source = DataFrameSource(source)
elif isinstance(source, pd.Panel):
source = DataPanelSource(source)
if isinstance(source, list):
self.set_sources(source)
else:
self.set_sources([source])
# Override sim_params if params are provided by the source.
if overwrite_sim_params:
if hasattr(source, 'start'):
self.sim_params.period_start = source.start
if hasattr(source, 'end'):
self.sim_params.period_end = source.end
all_sids = [sid for s in self.sources for sid in s.sids]
self.sim_params.sids = set(all_sids)
# Changing period_start and period_close might require updating
# of first_open and last_close.
self.sim_params._update_internal()
# Create history containers
if len(self.history_specs) != 0:
self.history_container = HistoryContainer(
self.history_specs,
self.sim_params.sids,
self.sim_params.first_open)
# Create transforms by wrapping them into StatefulTransforms
self.transforms = []
for namestring, trans_descr in iteritems(self.registered_transforms):
sf = StatefulTransform(
trans_descr['class'],
*trans_descr['args'],
**trans_descr['kwargs']
)
sf.namestring = namestring
self.transforms.append(sf)
# force a reset of the performance tracker, in case
# this is a repeat run of the algorithm.
self.perf_tracker = None
# create transforms and zipline
self.gen = self._create_generator(self.sim_params)
with ZiplineAPI(self):
# loop through simulated_trading, each iteration returns a
# perf dictionary
perfs = []
for perf in self.gen:
perfs.append(perf)
# convert perf dict to pandas dataframe
daily_stats = self._create_daily_stats(perfs)
self.analyze(daily_stats)
return daily_stats