本文整理汇总了Python中yhat.Yhat.deploy方法的典型用法代码示例。如果您正苦于以下问题:Python Yhat.deploy方法的具体用法?Python Yhat.deploy怎么用?Python Yhat.deploy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类yhat.Yhat
的用法示例。
在下文中一共展示了Yhat.deploy方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: range
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
from yhat import Yhat, YhatModel , preprocess
x = range(10)
class HelloWorld(YhatModel):
@preprocess(in_type=dict, out_type=dict)
def execute(self, data):
print x[:10]
me = data['name']
greeting = "Hello " + str(me) + "!"
return { "greeting": greeting, "x": x}
# yh = Yhat("greg", "fCVZiLJhS95cnxOrsp5e2VSkk0GfypZqeRCntTD1nHA", "http://cloud.yhathq.com/")
yh = Yhat("greg", "9207b9a2dd9d48848b139b729d4354bc", "http://localhost:8080/")
yh.deploy("NewZippedModel", HelloWorld, globals())
示例2: HelloWorld
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
import os
from yhat import Yhat, YhatModel, preprocess
from foo.foo import print_foo
from module import function_in_same_dir
class HelloWorld(YhatModel):
@preprocess(in_type=dict, out_type=dict)
def execute(self, data):
me = data['name']
greeting = "Hello %s!" % me
print_foo(me)
return { "greeting": greeting, "nine": function_in_same_dir() }
username = os.environ["USERNAME"]
apikey = os.environ["APIKEY"]
endpoint = os.environ["OPS_ENDPOINT"]
print "%s:%s:%s" % (username, apikey, endpoint,)
yh = Yhat(
username,
apikey,
endpoint
)
yh.deploy("HelloWorldPkg", HelloWorld, globals(), sure=True, verbose=1)
示例3: HelloWorld
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
import os
from yhat import Yhat, YhatModel, preprocess
class HelloWorld(YhatModel):
@preprocess(in_type=dict, out_type=dict)
def execute(self, data):
me = data['name']
greeting = "Hello %s!" % me
return { "greeting": greeting }
username = os.environ["USERNAME"]
apikey = os.environ["APIKEY"]
endpoint = os.environ["OPS_ENDPOINT"]
print "%s:%s:%s" % (username, apikey, endpoint,)
yh = Yhat(
username,
apikey,
endpoint
)
yh.deploy("IndentedModel", HelloWorld, globals(), sure=True)
示例4: execute
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
@preprocess(in_type=pd.DataFrame,out_type=pd.DataFrame)
def execute(self,data):
# Collect customer meta data
response = data[['Area Code','Phone']]
charges = ['Day Charge','Eve Charge','Night Charge','Intl Charge']
response['customer_worth'] = data[charges].sum(axis=1)
# Convert yes no columns to bool
data[yes_no_cols] = data[yes_no_cols] == 'yes'
# Create feature space
X = data[features].as_matrix().astype(float)
X = scaler.transform(X)
# Make prediction
churn_prob = clf.predict_proba(X)
response['churn_prob'] = churn_prob[:,1]
# Calculate expected loss by churn
response['expected_loss'] = response['churn_prob'] * response['customer_worth']
response = response.sort('expected_loss',ascending=False)
# Return response DataFrame
return response
yh = Yhat(
"e[at]yhathq.com",
" MY APIKEY ",
"http://cloud.yhathq.com/"
)
print "Deploying model"
response = yh.deploy("PythonChurnModel",ChurnModel,globals())
print json.dumps(response,indent=2)
示例5: hello
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
{"name": "x", "na_filler": 0},
{"name": "z", "na_filler": fill_z}
]
class MyOtherClass:
def hello(self, x):
return "hello: %s" % str(x)
REQS = open("reqs.txt").read()
### <DEPLOYMENT START> ###
# @preprocess(in_type=dict, out_type=pd.DataFrame, null_handler=features)
class MyModel(YhatModel):
REQUIREMENTS=REQS
@preprocess(out_type=pd.DataFrame)
def execute(self, data):
return predict(data)
# "push" to server would be here
data = {"x": 1, "z": None}
if __name__ == '__main__':
creds = credentials.read()
yh = Yhat(creds['username'], creds['apikey'], "http://localhost:3000/")
yh.deploy("mynewmodel", MyModel, globals())
示例6: TravisModel
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
training_val = RFmodel.score(transform_dummies(X_train,False), y_train)
testing_val = RFmodel.score(transform_dummies(X_test,False), y_test)
print "training:", testing_val
print "testing: ", training_val
############ DEPLOYMENT ######################
from yhat import Yhat, YhatModel, preprocess
class TravisModel(YhatModel):
def fit_val(self):
testing_val = RFmodel.score(transform_dummies(X_test, False), y_test)
return testing_val
def execute(self,data):
data = transform_dummies(data,False)
output = RFmodel.predict(data)
return output.tolist()
########## DEPLOY SET #####################
if __name__ == '__main__':
yh = Yhat(
os.environ['YHAT_USERNAME'],
os.environ['YHAT_APIKEY'],
os.environ['YHAT_URL'],
)
yh.deploy("TravisModel", TravisModel, globals(), True)
示例7: Graphlab_Recommender
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
yahoo_data = aData
yahoo_data.sort(columns = 'user_id', ascending = True, inplace = True) # no pass by value
# rating-based CF recommendations
data = {'user': [15], 'products':[123764, 71142], 'n':10}
aGraphlab_Model = Graphlab_Recommender(dataset = yahoo_data)
print aGraphlab_Model.predict(data)
""" USA TODAY """
# rating-based CF recommendations
usaToday_data = aData
param = {'user_id':'Reviewer', 'product_id':'Id', 'ratings': 'Rating'}
data = {'user': ['Edna Gundersen'], 'products':[123901], 'n':10}
aGraphlab_Model = Graphlab_Recommender(dataset = usaToday_data, needed_param = param)
print aGraphlab_Model.predict(data)
# textual analytics + CF method
param = {'comment': 'Brief', 'ratings': 'Rating', 'user_id':'Reviewer', 'product_id':'Id'}
model, ratings_data = rec.sentiment_analysis_regress(usaToday_data, param)
ratings_data = ratings_data.sort(columns = 'user_id')
ratings_data['user_id'] = ratings_data['user_id'].fillna('anonymous')
print ratings_data
aGraphlab_Model = Graphlab_Recommender(dataset = ratings_data)
data = {'user': ['Edna Gundersen'], 'products':[123901], 'n':10}
print aGraphlab_Model.predict(data)
'''
# deployment
yh = Yhat("[email protected]", "b36b987283a83e5e4d2814af6ef0eda9", "http://cloud.yhathq.com/")
yh.deploy("Final_Recommender", Final_Recommender, globals())
示例8: test_deployment
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
def test_deployment(self):
yh = Yhat("foo", "bar", "http://api.yhathq.com/")
_, bundle = yh.deploy("HelloWorld", HelloWorld, globals(), dry_run=True)
self.assertTrue(True)
示例9: Yhat
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
from example_app.models.yhat_model import TestModel, Foo
from yhat import Yhat
import json
yh = Yhat(
"greg",
"foo",
"http://api.yhat.com/"
)
TestModel().execute(1)
# _, bundle = yh.deploy("Foo", TestModel, globals(), dry_run=True)
yh.deploy("Foo", TestModel, globals(), verbose=2)
# print json.dumps(bundle, indent=2)
示例10: make_prediction
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
texts = data["texts"]
return make_prediction(texts)
# example handling a single record
example = {
"texts": {
"text": "Alpo dog food"
}
}
pp.pprint(ProductClassifier().execute(example))
# example handling multiple records
example = {
"texts": [
{"text": "Alpo dog food" },
{"text": "Diet Coke"}
]
}
pp.pprint(ProductClassifier().execute(example))
YHAT_USERNAME = ""
YHAT_APIKEY = ""
try:
yh = Yhat(YHAT_USERNAME, YHAT_APIKEY, "http://cloud.yhathq.com/")
except:
print "Please add in your YHAT_USERNAME and YHAT_APIKEY"
sys.exit(1)
print yh.deploy("ProductClassifier", ProductClassifier, globals())
示例11: test_detect_submodule_in_deployment
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
def test_detect_submodule_in_deployment(self):
yh = Yhat("greg", "test", "http://api.yhathq.com/")
_, bundle = yh.deploy("TestModel", TestModel, globals(), sure=True, dry_run=True)
self.assertEqual(len(bundle['modules']), 8)
示例12: get_sims
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
return p[0:n_recs]
get_sims(["Sierra Nevada Pale Ale", "60 Minute IPA"])
from yhat import Yhat, YhatModel, preprocess
class BeerRecommender(YhatModel):
REQUIREMENTS=['numpy==1.11.3',
'pandas==0.19.2',
'scikit-learn==0.18.1']
def execute(self, data):
beers = data.get("beers")
n_recs = data.get("n_recs")
prob = data.get("prob")
unique = data.get("unique")
suggested_beers = get_sims(beers, n_recs, prob, unique)
result = suggested_beers.to_dict(orient='records')
return result
model = BeerRecommender()
model.execute({'beers':["Sierra Nevada Pale Ale"],'n_recs':10})
yh = Yhat("demo-master", "3b0160e10f6d7a94a2528b11b1c9bca1", "https://sandbox.c.yhat.com/")
print yh.deploy("BeerRecommender", BeerRecommender, globals(), autodetect=False, sure=True)
# print yh.predict("BeerRecommender", {"beers": ["Sierra Nevada Pale Ale",
# "120 Minute IPA", "Stone Ruination IPA"]})
示例13: calculate_score
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
data = data[features]
prob = glm.predict_proba(data)[0][1]
if prob > 0.3:
decline_code = "Credit score too low"
else:
decline_code = ""
odds = glm.predict_log_proba(data)[0][1]
score = calculate_score(odds)
output = {
"prob_default": [prob],
"decline_code": [decline_code],
"score": [score]
}
return output
df_term[features].head()
test = {
"last_fico_range_low": 705,
"last_fico_range_high": 732,
"home_ownership": "MORTGAGE"
}
LoanModel().execute(test)
yh = Yhat("colin", "d325fc5bcb83fc197ee01edb58b4b396",
"https://sandbox.c.yhat.com/")
yh.deploy("LendingClub", LoanModel, globals(), True)
示例14: MarketingSearchAPI
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
import os
from yhat import Yhat, YhatModel
from pricing import Pricing
class MarketingSearchAPI(YhatModel):
REQUIREMENTS = [
"pandas==0.15.2",
"numpy"
]
def execute(self, data):
result = p.predict(data)
return result
p = Pricing()
username = os.environ["USERNAME"]
apikey = os.environ["APIKEY"]
endpoint = os.environ["OPS_ENDPOINT"]
print "%s:%s:%s" % (username, apikey, endpoint,)
yh = Yhat(
username,
apikey,
endpoint
)
yh.deploy("RelayRidesPricing", MarketingSearchAPI, globals(), sure=True)
示例15: predict
# 需要导入模块: from yhat import Yhat [as 别名]
# 或者: from yhat.Yhat import deploy [as 别名]
return self.dv.transform(doc)
def predict(self, x):
"""
Evaluate model on array
delegates to LinearRegression self.lr
returns a dict (will be json encoded) suppling
"predictedPrice", "suspectedOutlier", "x", "threshold"
where "x" is the input vector and "threshold" is determined
whether or not a listing is a suspected outlier.
"""
doc = self.dv.inverse_transform(x)[0]
predicted = self.lr.predict(x)[0]
err = abs(predicted - doc["price"])
return {
"predictedPrice": predicted,
"x": doc,
"suspectedOutlier": 1 if (err > self.threshold) else 0,
"threshold": self.threshold,
}
pm = PricingModel(dv=dv, lr=LR, threshold=np.percentile(trainingErrs, 95))
print pm.execute(testing.T.to_dict()[0])
if raw_input("Deploy? (y/N): ").lower() == "y":
username = "greg"
apikey = "abcd1234"
yh = Yhat(username, apikey, "http://cloud.yhathq.com/")
print yh.deploy(model_name, fitted_model)