当前位置: 首页>>代码示例>>Python>>正文


Python FileWriter.flush方法代码示例

本文整理汇总了Python中wherehows.common.writers.FileWriter.flush方法的典型用法代码示例。如果您正苦于以下问题:Python FileWriter.flush方法的具体用法?Python FileWriter.flush怎么用?Python FileWriter.flush使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在wherehows.common.writers.FileWriter的用法示例。


在下文中一共展示了FileWriter.flush方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: collect_flow_execs

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def collect_flow_execs(self, flow_exec_file, job_exec_file, look_back_period):
    self.logger.info( "collect flow&job executions")
    flow_exec_writer = FileWriter(flow_exec_file)
    job_exec_writer = FileWriter(job_exec_file)

    cmd = """select * from execution_flows where end_time > UNIX_TIMESTAMP(now() - INTERVAL %d MINUTE) * 1000 """ % (int(look_back_period))
    self.az_cursor.execute(cmd)
    rows = DbUtil.dict_cursor(self.az_cursor)
    row_count = 0
    for row in rows:
      json_column = 'flow_data'
      unzipped_content = gzip.GzipFile(mode='r', fileobj=StringIO.StringIO(row[json_column].tostring())).read()
      try:
        row[json_column] = json.loads(unzipped_content)
      except Exception as e:
        self.logger.error(e)
        pass
      flow_data = row[json_column]
      flow_path = flow_data['projectName'] + ":" + flow_data['flowId']
      flow_exec_record = AzkabanFlowExecRecord(self.app_id,
                                               flow_data['flowId'],
                                               flow_path,
                                               row['version'],
                                               row['exec_id'],
                                               flow_data['status'],
                                               flow_data['attempt'],
                                               row['submit_user'],
                                               long(row['start_time']) / 1000,
                                               long(row['end_time']) / 1000,
                                               self.wh_exec_id)
      flow_exec_writer.append(flow_exec_record)
      nodes = flow_data['nodes']
      job_exec_records = []
      for node in nodes:
        job_exec_record = AzkabanJobExecRecord(self.app_id,
                                                flow_path,
                                                row['version'],
                                                row['exec_id'],
                                                node['id'],
                                                flow_path + "/" + node['id'],
                                                None,
                                                node['status'],
                                                node['attempt'],
                                                long(node['startTime']) / 1000,
                                                long(node['endTime']) / 1000,
                                                self.wh_exec_id)
        job_exec_records.append(job_exec_record)

      AzkabanJobExecUtil.sortAndSet(job_exec_records)
      for r in job_exec_records:
        job_exec_writer.append(r)

      row_count += 1
      if row_count % 10000 == 0:
        flow_exec_writer.flush()
        job_exec_writer.flush()
    flow_exec_writer.close()
    job_exec_writer.close()
开发者ID:alyiwang,项目名称:WhereHows,代码行数:60,代码来源:AzkabanExtract.py

示例2: collect_flow_jobs

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def collect_flow_jobs(self, flow_file, job_file, dag_file):
    self.logger.info("collect flow&jobs")
    query = "SELECT distinct f.*, p.name as project_name FROM  project_flows f inner join projects p on f.project_id = p.id and f.version = p.version where p.active = 1"
    self.az_cursor.execute(query)
    rows = DbUtil.dict_cursor(self.az_cursor)
    flow_writer = FileWriter(flow_file)
    job_writer = FileWriter(job_file)
    dag_writer = FileWriter(dag_file)
    row_count = 0

    for row in rows:
      row['version'] = 0 if (row["version"] is None) else row["version"]

      json_column = 'json'
      unzipped_content = gzip.GzipFile(mode='r', fileobj=StringIO.StringIO(row[json_column].tostring())).read()
      try:
        row[json_column] = json.loads(unzipped_content)
      except:
        pass

      flow_path = row['project_name'] + ":" + row['flow_id']

      flow_record = AzkabanFlowRecord(self.app_id,
                                      row['flow_id'],
                                      row['project_name'],
                                      flow_path,
                                      0,
                                      row['modified_time'] / 1000,
                                      row["version"],
                                      'Y',
                                      self.wh_exec_id)
      flow_writer.append(flow_record)

      # get flow jobs
      nodes = row[json_column]['nodes']
      for node in nodes:
        job_record = AzkabanJobRecord(self.app_id,
                                      flow_path,
                                      row["version"],
                                      node['id'],
                                      flow_path + '/' + node['id'],
                                      node['jobType'],
                                      'Y',
                                      self.wh_exec_id)
        if node['jobType'] == 'flow':
          job_record.setRefFlowPath(row['project_name'] + ":" + node['embeddedFlowId'])
        job_writer.append(job_record)

      # job dag
      edges = row[json_column]['edges']
      for edge in edges:
        dag_edge = AzkabanFlowDagRecord(self.app_id,
                                        flow_path,
                                        row['version'],
                                        flow_path + '/' + edge['source'],
                                        flow_path + '/' + edge['target'],
                                        self.wh_exec_id)
        dag_writer.append(dag_edge)

      row_count += 1

      if row_count % 1000 == 0:
        flow_writer.flush()
        job_writer.flush()
        dag_writer.flush()

    flow_writer.close()
    job_writer.close()
    dag_writer.close()
开发者ID:alyiwang,项目名称:WhereHows,代码行数:71,代码来源:AzkabanExtract.py

示例3: transform

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def transform(self, input, td_metadata, td_field_metadata):
    '''
    convert from json to csv
    :param input: input json file
    :param td_metadata: output data file for teradata metadata
    :param td_field_metadata: output data file for teradata field metadata
    :return:
    '''
    f_json = open(input)
    data = json.load(f_json)
    f_json.close()

    schema_file_writer = FileWriter(td_metadata)
    field_file_writer = FileWriter(td_field_metadata)

    for d in data:
      i = 0
      for k in d.keys():
        if k not in ['tables', 'views']:
          continue
        self.logger.info("%s %4d %s" % (datetime.datetime.now().strftime("%H:%M:%S"), len(d[k]), k))
        for t in d[k]:
          self.logger.info("%4d %s" % (i, t['name']))
          if t['name'] == 'HDFStoTD_2464_ERR_1':
            continue
          i += 1
          output = {}
          prop_json = {}
          output['name'] = t['name']
          output['original_name'] = t['original_name']

          prop_json["createTime"] = t["createTime"] if t.has_key("createTime") else None
          prop_json["lastAlterTime"] = t["lastAlterTime"] if t.has_key("lastAlterTime") else None
          prop_json["lastAccessTime"] = t["lastAccessTime"] if t.has_key("lastAccessTime") else None
          prop_json["accessCount"] = t["accessCount"] if t.has_key("accessCount") else None
          prop_json["sizeInMbytes"] = t["sizeInMbytes"] if t.has_key("sizeInMbytes") else None
          if "type" in t:
            prop_json["storage_type"] = t["type"]
          if "partition" in t:
            prop_json["partition"] = t["partition"]
          if "partitions" in t:
            prop_json["partitions"] = t["partitions"]
          if "hashKey" in t:
            prop_json["hashKey"] = t["hashKey"]
          if "indices" in t:
            prop_json["indices"] = t["indices"]
          if "referenceTables" in t:
            prop_json["referenceTables"] = t["referenceTables"]
          if "viewSqlText" in t:
            prop_json["viewSqlText"] = t["viewSqlText"]

          output['fields'] = []
          flds = {}
          field_detail_list = []
          sort_id = 0
          for c in t['columns']:
            # output['fields'].append(
            #                    { 'name' : t['name'].encode('latin-1'),
            #                      'type' : None if c['data_type'] is None else c['data_type'].encode('latin-1'),
            #                      'attributes_json' : c}
            #                output['fields'][c['name'].encode('latin-1')].append({ "doc" : "", "type" : [None if c['data_type'] is None else c['data_type'].encode('latin-1')]})
            sort_id += 1
            output['fields'].append({"name": c['name'], "doc": '', "type": c['dataType'] if c['dataType'] else None,
                                     "nullable": c['nullable'], "maxByteLength": c['maxByteLength'],
                                     "format": c['columnFormat'] if c.has_key('columnFormat') else None,
                                     "accessCount": c['accessCount'] if c.has_key('accessCount') else None,
                                     "lastAccessTime": c['lastAccessTime'] if c.has_key("lastAccessTime") else None})

            flds[c['name']] = {'type': c['dataType'], "maxByteLength": c['maxByteLength']}

            field_detail_list.append(
              ["teradata:///%s/%s" % (d['database'], output['name']), str(sort_id), '0', '', c['name'], '',
               c['dataType'] if 'dataType' in c and c['dataType'] is not None else '',
               str(c['maxByteLength']) if 'maxByteLength' in c else '0',
               str(c['precision']) if 'precision' in c and c['precision'] is not None else '',
               str(c['scale']) if 'scale' in c and c['scale'] is not None else '',
               c['nullable'] if 'nullable' in c and c['nullable'] is not None else 'Y', '', '', '', '', '', '', ''])

          dataset_scehma_record = DatasetSchemaRecord(output['name'], json.dumps(output), json.dumps(prop_json),
                                                      json.dumps(flds),
                                                      "teradata:///%s/%s" % (d['database'], output['name']), 'Teradata',
                                                      output['original_name'],
                                                      (self.convert_timestamp(t["createTime"]) if t.has_key("createTime") else None),
                                                      (self.convert_timestamp(t["lastAlterTime"]) if t.has_key("lastAlterTime") else None))
          schema_file_writer.append(dataset_scehma_record)

          for fields in field_detail_list:
            field_record = DatasetFieldRecord(fields)
            field_file_writer.append(field_record)

        schema_file_writer.flush()
        field_file_writer.flush()
        self.logger.info("%20s contains %6d %s" % (d['database'], i, k))

    schema_file_writer.close()
    field_file_writer.close()
开发者ID:0xqq,项目名称:WhereHows,代码行数:98,代码来源:TeradataTransform.py

示例4: collect_flow_execs

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]

#.........这里部分代码省略.........
        from so_job_history where SO_JOBID = SO_CHAIN_ID or SO_PARENTS_JOBID <> SO_CHAIN_ID
    '''
    if self.last_execution_unix_time:
      job_cmd = \
        """SELECT D.SO_TASK_NAME, U.SO_USER_NAME, H.SO_STATUS_NAME, H.SO_JOBID, D.SO_DET_SEQ as JOB_ID,
           ROUND((cast((FROM_TZ(CAST(H.SO_JOB_STARTED as timestamp), 'US/Pacific') at time zone 'GMT') as date) -
           to_date('01-JAN-1970','DD-MON-YYYY'))* (86400)) as JOB_STARTED,
           ROUND((cast((FROM_TZ(CAST(H.SO_JOB_FINISHED as timestamp), 'US/Pacific') at time zone 'GMT') as date) -
           to_date('01-JAN-1970','DD-MON-YYYY'))* (86400)) as JOB_FINISHED
           FROM SO_JOB_HISTORY H
           JOIN SO_CHAIN_DETAIL D ON D.SO_CHAIN_SEQ = H.SO_CHAIN_SEQ AND D.SO_DET_SEQ = H.SO_DET_SEQ
           LEFT JOIN SO_USER_TABLE U ON H.SO_USER_SEQ = U.SO_USER_SEQ
           WHERE --H.SO_JOB_FINISHED >= DATE '1970-01-01' - interval '8' hour + (%d - 3600) / 86400) and
           H.SO_CHAIN_ID = %d"""
    else:
      job_cmd = \
        """SELECT D.SO_TASK_NAME, U.SO_USER_NAME, H.SO_STATUS_NAME, H.SO_JOBID, D.SO_DET_SEQ as JOB_ID,
           ROUND((cast((FROM_TZ(CAST(H.SO_JOB_STARTED as timestamp), 'US/Pacific') at time zone 'GMT') as date) -
           to_date('01-JAN-1970','DD-MON-YYYY'))* (86400)) as JOB_STARTED,
           ROUND((cast((FROM_TZ(CAST(H.SO_JOB_FINISHED as timestamp), 'US/Pacific') at time zone 'GMT') as date) -
           to_date('01-JAN-1970','DD-MON-YYYY'))* (86400)) as JOB_FINISHED
           FROM SO_JOB_HISTORY H
           JOIN SO_CHAIN_DETAIL D ON D.SO_CHAIN_SEQ = H.SO_CHAIN_SEQ AND D.SO_DET_SEQ = H.SO_DET_SEQ
           LEFT JOIN SO_USER_TABLE U ON H.SO_USER_SEQ = U.SO_USER_SEQ
           WHERE H.SO_JOB_FINISHED >= SYSDATE - %d and
           H.SO_CHAIN_ID = %d"""

    try:
      self.aw_cursor.execute(flow_cmd)
    except Exception as e:
      self.logger.error(e + "\n" + flow_cmd)

    rows = DbUtil.dict_cursor(self.aw_cursor)
    row_count = 0
    for row in rows:
      flow_path = row['SO_APPLICATION'] + ":" + row['SO_MODULE']
      so_flow_id = row['SO_JOBID']
      flow_attempt = 0
      flow_exec_id = 0
      try:
        flow_attempt = int(float(str(so_flow_id - int(so_flow_id))[1:])*100)
        flow_exec_id = int(so_flow_id)
      except Exception as e:
        self.logger.error(e)
      self.logger.debug("processing flow_exec_id: %8d" % flow_exec_id)

      flow_exec_record = AppworxFlowExecRecord(self.app_id,
                                               long(row['SO_JOB_SEQ']),
                                               row['SO_MODULE'],
                                               flow_path,
                                               0,
                                               flow_exec_id,
                                               row['SO_STATUS_NAME'],
                                               flow_attempt,
                                               row['SO_USER_NAME'] if row['SO_USER_NAME'] else '',
                                               long(row['JOB_STARTED']),
                                               long(row['JOB_FINISHED'] if row['JOB_FINISHED'] else 0),
                                               self.wh_exec_id)
      flow_exec_writer.append(flow_exec_record)

      new_appworx_cursor = self.aw_con.cursor()
      if self.last_execution_unix_time:
        new_appworx_cursor.execute(job_cmd % (long(self.last_execution_unix_time), flow_exec_id))
      else:
        new_appworx_cursor.execute(job_cmd % (int(self.lookback_period), flow_exec_id))
      job_rows = DbUtil.dict_cursor(new_appworx_cursor)

      for job in job_rows:
        so_job_id = job['SO_JOBID']
        job_attempt = 0
        job_exec_id = 0
        try:
          job_attempt = int(float(str(so_job_id - int(so_job_id))[1:])*100)
          job_exec_id = int(so_job_id)
        except Exception as e:
          self.logger.error(e)

        job_exec_record = AppworxJobExecRecord(self.app_id,
                                               long(row['SO_JOB_SEQ']),
                                               flow_path,
                                               0,
                                               flow_exec_id,
                                               long(job['JOB_ID']),
                                               job['SO_TASK_NAME'],
                                               flow_path + "/" + job['SO_TASK_NAME'],
                                               job_exec_id,
                                               job['SO_STATUS_NAME'],
                                               job_attempt,
                                               long(job['JOB_STARTED']),
                                               long(job['JOB_FINISHED']),
                                               self.wh_exec_id)

        job_exec_writer.append(job_exec_record)
        row_count += 1
      if row_count % 10000 == 0:
        flow_exec_writer.flush()
        job_exec_writer.flush()

    flow_exec_writer.close()
    job_exec_writer.close()
开发者ID:alyiwang,项目名称:WhereHows,代码行数:104,代码来源:AppworxExtract.py

示例5: transform

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def transform(self, input, hive_metadata, hive_field_metadata):
    """
    convert from json to csv
    :param input: input json file
    :param hive_metadata: output data file for hive table metadata
    :param hive_field_metadata: output data file for hive field metadata
    :return:
    """
    f_json = open(input)
    all_data = json.load(f_json)
    f_json.close()

    schema_file_writer = FileWriter(hive_metadata)
    field_file_writer = FileWriter(hive_field_metadata)

    lineageInfo = LineageInfo()
    depends_sql = """
      SELECT d.NAME DB_NAME, case when t.TBL_NAME regexp '_[0-9]+_[0-9]+_[0-9]+$'
          then concat(substring(t.TBL_NAME, 1, length(t.TBL_NAME) - length(substring_index(t.TBL_NAME, '_', -3)) - 1),'_{version}')
        else t.TBL_NAME
        end dataset_name,
        concat('/', d.NAME, '/', t.TBL_NAME) object_name,
        case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and d.NAME not like 'dalitest%' and t.TBL_TYPE = 'VIRTUAL_VIEW'
          then 'dalids'
        else 'hive'
        end object_type,
        case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and d.NAME not like 'dalitest%' and t.TBL_TYPE = 'VIRTUAL_VIEW'
          then 'View'
        else
            case when LOCATE('view', LOWER(t.TBL_TYPE)) > 0 then 'View'
          when LOCATE('index', LOWER(t.TBL_TYPE)) > 0 then 'Index'
            else 'Table'
          end
        end object_sub_type,
        case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and t.TBL_TYPE = 'VIRTUAL_VIEW'
          then 'dalids'
        else 'hive'
        end prefix
      FROM TBLS t JOIN DBS d on t.DB_ID = d.DB_ID
      WHERE d.NAME = '{db_name}' and t.TBL_NAME = '{table_name}'
      """

    # one db info : 'type', 'database', 'tables'
    # one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID'
    #                  optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList'
    for one_db_info in all_data:
      i = 0
      for table in one_db_info['tables']:
        i += 1
        schema_json = {}
        prop_json = {}  # set the prop json

        for prop_name in TableInfo.optional_prop:
          if prop_name in table and table[prop_name] is not None:
            prop_json[prop_name] = table[prop_name]

        if TableInfo.view_expended_text in prop_json:
          text = prop_json[TableInfo.view_expended_text].replace('`', '')
          array = HiveViewDependency.getViewDependency(text)
          l = []
          for a in array:
            l.append(a)
            names = str(a).split('.')
            if names and len(names) >= 2:
              db_name = names[0]
              table_name = names[1]
              if db_name and table_name:
                rows = []
                self.curs.execute(depends_sql.format(db_name=db_name, table_name=table_name, version='{version}'))
                rows = self.curs.fetchall()
                if rows and len(rows) > 0:
                  for row_index, row_value in enumerate(rows):
                    dependent_record = HiveDependencyInstanceRecord(
                                          one_db_info['type'],
                                          table['type'],
                                          "/%s/%s" % (one_db_info['database'], table['name']),
                                          'dalids:///' + one_db_info['database'] + '/' + table['name']
                                          if one_db_info['type'].lower() == 'dalids'
                                          else 'hive:///' + one_db_info['database'] + '/' + table['name'],
                                          'depends on',
                                          'is used by',
                                          row_value[3],
                                          row_value[4],
                                          row_value[2],
                                          row_value[5] + ':///' + row_value[0] + '/' + row_value[1], '')
                    self.instance_writer.append(dependent_record)
          prop_json['view_depends_on'] = l
          self.instance_writer.flush()

        # process either schema
        flds = {}
        field_detail_list = []

        if TableInfo.schema_literal in table and table[TableInfo.schema_literal] is not None:
          sort_id = 0
          urn = "hive:///%s/%s" % (one_db_info['database'], table['name'])
          try:
            schema_data = json.loads(table[TableInfo.schema_literal])
            schema_json = schema_data
            acp = AvroColumnParser(schema_data, urn = urn)
#.........这里部分代码省略.........
开发者ID:CSRedRat,项目名称:WhereHows,代码行数:103,代码来源:HiveTransform.py

示例6: collect_flow_jobs

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def collect_flow_jobs(self, flow_file, job_file, dag_file):
    self.logger.info("collect flow&jobs [last_execution_unix_time=%s lookback_period=%s]"
                     % (self.last_execution_unix_time, self.lookback_period))
    timezone = "ALTER SESSION SET TIME_ZONE = 'US/Pacific'"
    self.aw_cursor.execute(timezone)
    schema = "ALTER SESSION SET CURRENT_SCHEMA=APPWORX"
    self.aw_cursor.execute(schema)
    if self.last_execution_unix_time:
        time_filter = "(DATE '1970-01-01' - INTERVAL '8' HOUR) + (%d - 3600) / 86400" % long(self.last_execution_unix_time)
    else:
        time_filter = "SYSDATE - %d" % int(self.lookback_period)
    flow_query = \
        """SELECT J.SO_JOB_SEQ, J.SO_APPLICATION, J.SO_MODULE, R.LAST_CHAIN_ID
           FROM SO_JOB_TABLE J JOIN (
           SELECT SO_JOB_SEQ, MAX(SO_CHAIN_ID) as LAST_CHAIN_ID
           FROM
           ( SELECT SO_JOB_SEQ, SO_CHAIN_ID FROM SO_JOB_HISTORY
             WHERE SO_JOB_FINISHED >= %s
               AND SO_CHILD_COUNT > 0
             UNION ALL
             SELECT SO_JOB_SEQ, SO_CHAIN_ID FROM SO_JOB_QUEUE
             WHERE SO_STATUS_NAME IN ('INITIATED', 'RUNNING', 'FINISHED')
               AND SO_CHILD_COUNT > 0
           )
           GROUP BY SO_JOB_SEQ
           ) R ON J.SO_JOB_SEQ = R.SO_JOB_SEQ
           WHERE SO_COMMAND_TYPE = 'CHAIN'
           ORDER BY 2,3
        """ % time_filter
    job_query = \
        """SELECT d.SO_TASK_NAME, d.SO_CHAIN_ORDER, d.SO_PREDECESSORS as PREDECESSORS, d.SO_DET_SEQ as JOB_ID,
            t.* FROM SO_CHAIN_DETAIL d
            JOIN SO_JOB_TABLE t ON d.SO_JOB_SEQ = t.SO_JOB_SEQ
            WHERE d.SO_CHAIN_SEQ = %d
            ORDER BY d.SO_CHAIN_ORDER
        """
    self.aw_cursor.execute(flow_query)
    rows = DbUtil.dict_cursor(self.aw_cursor)
    flow_writer = FileWriter(flow_file)
    job_writer = FileWriter(job_file)
    dag_writer = FileWriter(dag_file)
    row_count = 0

    for row in rows:

      flow_path = row['SO_APPLICATION'] + ":" + row['SO_MODULE']

      flow_record = AppworxFlowRecord(self.app_id,
                                      long(row['SO_JOB_SEQ']),
                                      row['SO_MODULE'],
                                      row['SO_APPLICATION'],
                                      flow_path,
                                      0,
                                      0,
                                      0,
                                      'Y',
                                      self.wh_exec_id)
      flow_writer.append(flow_record)
      new_appworx_cursor = self.aw_con.cursor()
      new_appworx_cursor.execute(job_query % row['SO_JOB_SEQ'])
      job_rows = DbUtil.dict_cursor(new_appworx_cursor)
      for job in job_rows:
        job_record = AppworxJobRecord(self.app_id,
                                      long(row['SO_JOB_SEQ']),
                                      flow_path,
                                      0,
                                      long(job['JOB_ID']),
                                      job['SO_TASK_NAME'],
                                      flow_path + '/' + job['SO_TASK_NAME'],
                                      job['SO_MODULE'],
                                      'Y',
                                      self.wh_exec_id)
        command_type = job['SO_COMMAND_TYPE']
        if command_type and command_type == 'CHAIN':
          job_record.setRefFlowPath(job['SO_APPLICATION'] + ":" + job['SO_MODULE'])
          job_record.setJobType('CHAIN')

        job_writer.append(job_record)

        predecessors_str = job['PREDECESSORS']
        if predecessors_str:
          predecessors = re.findall(r"\&\/(.+?)\s\=\sS", predecessors_str)
          if predecessors:
            for predecessor in predecessors:
              dag_edge = AppworxFlowDagRecord(self.app_id,
                                             long(row['SO_JOB_SEQ']),
                                             flow_path,
                                             0,
                                             flow_path + '/' + predecessor,
                                             flow_path + '/' + job['SO_TASK_NAME'],
                                             self.wh_exec_id)
              dag_writer.append(dag_edge)
      row_count += 1

      if row_count % 1000 == 0:
        flow_writer.flush()
        job_writer.flush()
        dag_writer.flush()

    flow_writer.close()
#.........这里部分代码省略.........
开发者ID:alyiwang,项目名称:WhereHows,代码行数:103,代码来源:AppworxExtract.py

示例7: transform

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def transform(self, input, hive_metadata, hive_field_metadata):
    """
    convert from json to csv
    :param input: input json file
    :param hive_metadata: output data file for hive table metadata
    :param hive_field_metadata: output data file for hive field metadata
    :return:
    """
    f_json = open(input)
    all_data = json.load(f_json)
    f_json.close()

    schema_file_writer = FileWriter(hive_metadata)
    field_file_writer = FileWriter(hive_field_metadata)

    lineageInfo = LineageInfo()

    # one db info : 'type', 'database', 'tables'
    # one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID'
    #                  optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList'
    for one_db_info in all_data:
      i = 0
      for table in one_db_info['tables']:
        i += 1
        schema_json = {}
        prop_json = {}  # set the prop json

        for prop_name in TableInfo.optional_prop:
          if prop_name in table and table[prop_name] is not None:
            prop_json[prop_name] = table[prop_name]

        if TableInfo.view_expended_text in prop_json:
          text = prop_json[TableInfo.view_expended_text].replace('`', '')
          array = HiveViewDependency.getViewDependency(text)
          l = []
          for a in array:
            l.append(a)
          prop_json['view_depends_on'] = l

        # process either schema
        flds = {}
        field_detail_list = []
        if TableInfo.schema_literal in table and table[TableInfo.schema_literal] is not None:
          sort_id = 0
          try:
            schema_data = json.loads(table[TableInfo.schema_literal])
          except ValueError:
            self.logger.error("Schema json error for table : \n" + str(table))
          schema_json = schema_data

          # process each field
          for field in schema_data['fields']:
            field_name = field['name']
            type = field['type']  # could be a list
            default_value = field['default'] if 'default' in field else None
            doc = field['doc'] if 'doc' in field else None

            attributes_json = json.loads(field['attributes_json']) if 'attributes_json' in field else None
            pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = None
            if attributes_json:
              pk = attributes_json['pk'] if 'pk' in attributes_json else None
              delta = attributes_json['delta'] if 'delta' in attributes_json else None
              is_nullable = attributes_json['nullable'] if 'nullable' in attributes_json else None
              inside_type = attributes_json['type'] if 'type' in attributes_json else None
              format = attributes_json['format'] if 'format' in attributes_json else None

            flds[field_name] = {'type': type}
            # String urn, Integer sortId, Integer parentSortId, String parentPath, String fieldName,
            #String dataType, String isNullable, String defaultValue, Integer dataSize, String namespace, String description
            sort_id += 1
            field_detail_list.append(
              ["hive:///%s/%s" % (one_db_info['database'], table['name']), str(sort_id), '0', None, field_name, '',
               type, data_size, None, None, is_nullable, is_indexed, is_partitioned, default_value, None,
               json.dumps(attributes_json)])
        elif TableInfo.field_list in table:
          schema_json = {'type': 'record', 'name': table['name'],
                         'fields': table[TableInfo.field_list]}  # construct a schema for data came from COLUMN_V2
          for field in table[TableInfo.field_list]:
            field_name = field['ColumnName']
            type = field['TypeName']
            # ColumnName, IntegerIndex, TypeName, Comment
            flds[field_name] = {'type': type}
            pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = default_value = None  # TODO ingest
            field_detail_list.append(
              ["hive:///%s/%s" % (one_db_info['database'], table['name']), field['IntegerIndex'], '0', None, field_name,
               '', field['TypeName'], None, None, None, is_nullable, is_indexed, is_partitioned, default_value, None,
               None])

        dataset_scehma_record = DatasetSchemaRecord(table['name'], json.dumps(schema_json), json.dumps(prop_json),
                                                    json.dumps(flds),
                                                    "hive:///%s/%s" % (one_db_info['database'], table['name']), 'Hive',
                                                    '', (table[TableInfo.create_time] if table.has_key(
            TableInfo.create_time) else None), (table["lastAlterTime"]) if table.has_key("lastAlterTime") else None)
        schema_file_writer.append(dataset_scehma_record)

        for fields in field_detail_list:
          field_record = DatasetFieldRecord(fields)
          field_file_writer.append(field_record)

      schema_file_writer.flush()
#.........这里部分代码省略.........
开发者ID:0xqq,项目名称:WhereHows,代码行数:103,代码来源:HiveTransform.py

示例8: transform

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]
  def transform(self, input, hive_metadata, hive_field_metadata):
    """
    convert from json to csv
    :param input: input json file
    :param hive_metadata: output data file for hive table metadata
    :param hive_field_metadata: output data file for hive field metadata
    :return:
    """
    f_json = open(input)
    all_data = json.load(f_json)
    f_json.close()

    schema_file_writer = FileWriter(hive_metadata)
    field_file_writer = FileWriter(hive_field_metadata)

    lineageInfo = LineageInfo()

    # one db info : 'type', 'database', 'tables'
    # one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID'
    #                  optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList'
    for one_db_info in all_data:
      i = 0
      for table in one_db_info['tables']:
        i += 1
        schema_json = {}
        prop_json = {}  # set the prop json

        for prop_name in TableInfo.optional_prop:
          if prop_name in table and table[prop_name] is not None:
            prop_json[prop_name] = table[prop_name]

        if TableInfo.view_expended_text in prop_json:
          text = prop_json[TableInfo.view_expended_text].replace('`', '')
          array = HiveViewDependency.getViewDependency(text)
          l = []
          for a in array:
            l.append(a)
          prop_json['view_depends_on'] = l

        # process either schema
        flds = {}
        field_detail_list = []

        if TableInfo.schema_literal in table and table[TableInfo.schema_literal] is not None:
          sort_id = 0
          urn = "hive:///%s/%s" % (one_db_info['database'], table['name'])
          try:
            schema_data = json.loads(table[TableInfo.schema_literal])
            schema_json = schema_data
            acp = AvroColumnParser(schema_data, urn = urn)
            result = acp.get_column_list_result()
            field_detail_list += result
          except ValueError:
            self.logger.error("Schema json error for table : \n" + str(table))
        elif TableInfo.field_list in table:
          # Convert to avro
          uri = "hive:///%s/%s" % (one_db_info['database'], table['name'])
          hcp = HiveColumnParser(table, urn = uri)
          schema_json = {'fields' : hcp.column_type_dict['fields'], 'type' : 'record', 'name' : table['name'], 'uri' : uri}
          field_detail_list += hcp.column_type_list

        dataset_scehma_record = DatasetSchemaRecord(table['name'], json.dumps(schema_json), json.dumps(prop_json),
                                                    json.dumps(flds),
                                                    "hive:///%s/%s" % (one_db_info['database'], table['name']), 'Hive',
                                                    '', (table[TableInfo.create_time] if table.has_key(
            TableInfo.create_time) else None), (table["lastAlterTime"]) if table.has_key("lastAlterTime") else None)
        schema_file_writer.append(dataset_scehma_record)

        for fields in field_detail_list:
          field_record = DatasetFieldRecord(fields)
          field_file_writer.append(field_record)

      schema_file_writer.flush()
      field_file_writer.flush()
      self.logger.info("%20s contains %6d tables" % (one_db_info['database'], i))

    schema_file_writer.close()
    field_file_writer.close()
开发者ID:SunZhaonan,项目名称:WhereHows-1,代码行数:80,代码来源:HiveTransform.py

示例9: transform

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]

#.........这里部分代码省略.........
          try:
            array = HiveViewDependency.getViewDependency(text)
          except:
            self.logger.error("HiveViewDependency.getViewDependency(%s) failed!" % (table['name']))

          l = []
          for a in array:
            l.append(a)
            names = str(a).split('.')
            if names and len(names) >= 2:
              db_name = names[0].lower()
              table_name = names[1].lower()
              if db_name and table_name:
                self.curs.execute(depends_sql.format(db_name=db_name, table_name=table_name, version='{version}'))
                rows = self.curs.fetchall()
                self.conn_hms.commit()
                if rows and len(rows) > 0:
                  for row_index, row_value in enumerate(rows):
                    dependent_record = HiveDependencyInstanceRecord(
                                          one_db_info['type'],
                                          table['type'],
                                          "/%s/%s" % (one_db_info['database'], table['name']),
                                          'dalids:///' + one_db_info['database'] + '/' + table['dataset_name']
                                          if one_db_info['type'].lower() == 'dalids'
                                          else 'hive:///' + one_db_info['database'] + '/' + table['dataset_name'],
                                          'depends on',
                                          'Y',
                                          row_value[3],
                                          row_value[4],
                                          row_value[2],
                                          row_value[5] + ':///' + row_value[0] + '/' + row_value[1], '')
                    dependency_file_writer.append(dependent_record)
          prop_json['view_depends_on'] = l
          dependency_file_writer.flush()

        # process either schema
        flds = {}
        field_detail_list = []

        if TableInfo.schema_literal in table and \
           table[TableInfo.schema_literal] is not None and \
           table[TableInfo.schema_literal].startswith('{'):
          sort_id = 0
          urn = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          self.logger.info("Getting schema literal for: %s" % (urn))
          try:
            schema_data = json.loads(table[TableInfo.schema_literal])
            schema_json = schema_data
            acp = AvroColumnParser(schema_data, urn = urn)
            result = acp.get_column_list_result()
            field_detail_list += result
          except ValueError:
            self.logger.error("Schema Literal JSON error for table: " + str(table))

        elif TableInfo.field_list in table:
          # Convert to avro
          uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          if one_db_info['type'].lower() == 'dalids':
            uri = "dalids:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          else:
            uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          self.logger.info("Getting column definition for: %s" % (uri))
          try:
            hcp = HiveColumnParser(table, urn = uri)
            schema_json = {'fields' : hcp.column_type_dict['fields'], 'type' : 'record', 'name' : table['name'], 'uri' : uri}
            field_detail_list += hcp.column_type_list
开发者ID:alyiwang,项目名称:WhereHows,代码行数:70,代码来源:HiveTransform.py

示例10: __init__

# 需要导入模块: from wherehows.common.writers import FileWriter [as 别名]
# 或者: from wherehows.common.writers.FileWriter import flush [as 别名]

#.........这里部分代码省略.........

        if TableInfo.view_expended_text in prop_json:
          view_expanded_text = prop_json[TableInfo.view_expended_text]
          text = prop_json[TableInfo.view_expended_text].replace('`', '')
          array = HiveViewDependency.getViewDependency(text)
          l = []
          for a in array:
            l.append(a)
            names = str(a).split('.')
            if names and len(names) >= 2:
              db_name = names[0].lower()
              table_name = names[1].lower()
              if db_name and table_name:
                rows = []
                self.curs.execute(depends_sql.format(db_name=db_name, table_name=table_name, version='{version}'))
                rows = self.curs.fetchall()
                if rows and len(rows) > 0:
                  for row_index, row_value in enumerate(rows):
                    dependent_record = HiveDependencyInstanceRecord(
                                          one_db_info['type'],
                                          table['type'],
                                          "/%s/%s" % (one_db_info['database'], table['name']),
                                          'dalids:///' + one_db_info['database'] + '/' + table['dataset_name']
                                          if one_db_info['type'].lower() == 'dalids'
                                          else 'hive:///' + one_db_info['database'] + '/' + table['dataset_name'],
                                          'depends on',
                                          'Y',
                                          row_value[3],
                                          row_value[4],
                                          row_value[2],
                                          row_value[5] + ':///' + row_value[0] + '/' + row_value[1], '')
                    self.instance_writer.append(dependent_record)
          prop_json['view_depends_on'] = l
          self.instance_writer.flush()

        # process either schema
        flds = {}
        field_detail_list = []

        if TableInfo.schema_literal in table and \
           table[TableInfo.schema_literal] is not None and \
           table[TableInfo.schema_literal].startswith('{'):
          sort_id = 0
          urn = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          self.logger.info("Getting schema literal for: %s" % (urn))
          try:
            schema_data = json.loads(table[TableInfo.schema_literal])
            schema_json = schema_data
            acp = AvroColumnParser(schema_data, urn = urn)
            result = acp.get_column_list_result()
            field_detail_list += result
          except ValueError:
            self.logger.error("Schema Literal JSON error for table: " + str(table))

        elif TableInfo.field_list in table:
          # Convert to avro
          uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          if one_db_info['type'].lower() == 'dalids':
            uri = "dalids:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          else:
            uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
          self.logger.info("Getting column definition for: %s" % (uri))
          hcp = HiveColumnParser(table, urn = uri)
          schema_json = {'fields' : hcp.column_type_dict['fields'], 'type' : 'record', 'name' : table['name'], 'uri' : uri}
          field_detail_list += hcp.column_type_list
开发者ID:BornOfHope,项目名称:WhereHows,代码行数:69,代码来源:HiveTransform.py


注:本文中的wherehows.common.writers.FileWriter.flush方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。