本文整理汇总了Python中volumina.api.LazyflowSource.setObjectName方法的典型用法代码示例。如果您正苦于以下问题:Python LazyflowSource.setObjectName方法的具体用法?Python LazyflowSource.setObjectName怎么用?Python LazyflowSource.setObjectName使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类volumina.api.LazyflowSource
的用法示例。
在下文中一共展示了LazyflowSource.setObjectName方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: addCCOperator
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
def addCCOperator(self):
self.opCC = OpConnectedComponents(self.g)
self.opCC.inputs["Input"].connect(self.opThreshold.outputs["Output"])
#we shouldn't have to define these. But just in case...
self.opCC.inputs["Neighborhood"].setValue(6)
self.opCC.inputs["Background"].setValue(0)
ccsrc = LazyflowSource(self.opCC.outputs["Output"][0])
ccsrc.setObjectName("Connected Components")
ctb = colortables.create_default_16bit()
ctb.insert(0, QColor(0, 0, 0, 0).rgba()) # make background transparent
ccLayer = ColortableLayer(ccsrc, ctb)
ccLayer.name = "Connected Components"
self.layerstack.insert(1, ccLayer)
示例2: addThresholdOperator
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
def addThresholdOperator(self):
if self.opThreshold is None:
self.opThreshold = OpThreshold(self.g)
self.opThreshold.inputs["Input"].connect(self.pCache.outputs["Output"])
#channel, value = ThresholdDlg(self.labelListModel._labels)
channel = 0
value = 0.5
ref_label = self.labelListModel._labels[channel]
self.opThreshold.inputs["Channel"].setValue(channel)
self.opThreshold.inputs["Threshold"].setValue(value)
threshsrc = LazyflowSource(self.opThreshold.outputs["Output"][0])
threshsrc.setObjectName("Threshold for %s" % ref_label.name)
transparent = QColor(0,0,0,0)
white = QColor(255,255,255)
colorTable = [transparent.rgba(), white.rgba()]
threshLayer = ColortableLayer(threshsrc, colorTable = colorTable )
threshLayer.name = "Threshold for %s" % ref_label.name
self.layerstack.insert(1, threshLayer)
self.CCButton.setEnabled(True)
示例3: ObjectExtractionGui
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
class ObjectExtractionGui(LayerViewerGui):
def stopAndCleanUp(self):
# Unsubscribe to all signals
for fn in self.__cleanup_fns:
fn()
super(ObjectExtractionGui, self).stopAndCleanUp()
def __init__(self, *args, **kwargs):
self.__cleanup_fns = []
self._lock = threading.Lock()
super( ObjectExtractionGui, self ).__init__(*args, **kwargs)
def setupLayers(self):
mainOperator = self.topLevelOperatorView
layers = []
if mainOperator.ObjectCenterImage.ready():
self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
redct = [0, QColor(255, 0, 0).rgba()]
layer = ColortableLayer(self.centerimagesrc, redct)
layer.name = "Object centers"
layer.setToolTip("Object center positions, marked with a little red cross")
layer.visible = False
layers.append(layer)
ct = colortables.create_default_16bit()
if mainOperator.LabelImage.ready():
self.objectssrc = LazyflowSource(mainOperator.LabelImage)
self.objectssrc.setObjectName("LabelImage LazyflowSrc")
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
layer = ColortableLayer(self.objectssrc, ct)
layer.name = "Objects (connected components)"
layer.setToolTip("Segmented objects, shown in different colors")
layer.visible = False
layer.opacity = 0.5
layers.append(layer)
# white foreground on transparent background, even for labeled images
binct = [QColor(255, 255, 255, 255).rgba()]*65536
binct[0] = 0
if mainOperator.BinaryImage.ready():
self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
layer = ColortableLayer(self.binaryimagesrc, binct)
layer.name = "Binary image"
layer.setToolTip("Segmented objects, binary mask")
layers.append(layer)
## raw data layer
self.rawsrc = None
self.rawsrc = LazyflowSource(mainOperator.RawImage)
self.rawsrc.setObjectName("Raw Lazyflow Src")
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw data"
layers.insert(len(layers), layerraw)
mainOperator.RawImage.notifyReady(self._onReady)
self.__cleanup_fns.append( partial( mainOperator.RawImage.unregisterReady, self._onReady ) )
mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)
self.__cleanup_fns.append( partial( mainOperator.RawImage.unregisterMetaChanged, self._onMetaChanged ) )
if mainOperator.BinaryImage.meta.shape:
self.editor.dataShape = mainOperator.BinaryImage.meta.shape
mainOperator.BinaryImage.notifyMetaChanged(self._onMetaChanged)
self.__cleanup_fns.append( partial( mainOperator.BinaryImage.unregisterMetaChanged, self._onMetaChanged ) )
return layers
def _onMetaChanged(self, slot):
#FiXME: why do we need that?
if slot is self.topLevelOperatorView.BinaryImage:
if slot.meta.shape:
self.editor.dataShape = slot.meta.shape
if slot is self.topLevelOperatorView.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.topLevelOperatorView.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw data"
self.layerstack.append(layerraw)
def _onReady(self, slot):
if slot is self.topLevelOperatorView.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.topLevelOperatorView.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw data"
self.layerstack.append(layerraw)
def initAppletDrawerUi(self):
# Load the ui file (find it in our own directory)
localDir = os.path.split(__file__)[0]
self._drawer = uic.loadUi(localDir+"/drawer.ui")
self._drawer.selectFeaturesButton.pressed.connect(self._selectFeaturesButtonPressed)
if not ilastik_config.getboolean("ilastik", "debug"):
#.........这里部分代码省略.........
示例4: initGraph
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
def initGraph(self):
shape = self.inputProvider.outputs["Output"].shape
srcs = []
minMax = []
normalize = []
print "* Data has shape=%r" % (shape,)
#create a layer for each channel of the input:
slicer=OpMultiArraySlicer2(self.g)
slicer.inputs["Input"].connect(self.inputProvider.outputs["Output"])
slicer.inputs["AxisFlag"].setValue('c')
nchannels = shape[-1]
for ich in xrange(nchannels):
data=slicer.outputs['Slices'][ich][:].allocate().wait()
#find the minimum and maximum value for normalization
mm = (numpy.min(data), numpy.max(data))
print " - channel %d: min=%r, max=%r" % (ich, mm[0], mm[1])
minMax.append(mm)
if self._normalize_data:
normalize.append(mm)
else:
normalize.append((0,255))
layersrc = LazyflowSource(slicer.outputs['Slices'][ich], priority = 100)
layersrc.setObjectName("raw data channel=%d" % ich)
srcs.append(layersrc)
#FIXME: we shouldn't merge channels automatically, but for now it's prettier
layer1 = None
if nchannels == 1:
layer1 = GrayscaleLayer(srcs[0], range=minMax[0], normalize=normalize[0])
print " - showing raw data as grayscale"
elif nchannels==2:
layer1 = RGBALayer(red = srcs[0], normalizeR=normalize[0],
green = srcs[1], normalizeG=normalize[1], range=minMax[0:2]+[(0,255), (0,255)])
print " - showing channel 1 as red, channel 2 as green"
elif nchannels==3:
layer1 = RGBALayer(red = srcs[0], normalizeR=normalize[0],
green = srcs[1], normalizeG=normalize[1],
blue = srcs[2], normalizeB=normalize[2],
range = minMax[0:3])
print " - showing channel 1 as red, channel 2 as green, channel 3 as blue"
else:
print "only 1,2 or 3 channels supported so far"
return
print
layer1.name = "Input data"
layer1.ref_object = None
self.layerstack.append(layer1)
opImageList = Op5ToMulti(self.g)
opImageList.inputs["Input0"].connect(self.inputProvider.outputs["Output"])
#init the features operator
opPF = OpPixelFeaturesPresmoothed(self.g)
opPF.inputs["Input"].connect(opImageList.outputs["Outputs"])
opPF.inputs["Scales"].setValue(self.featScalesList)
self.opPF=opPF
#Caches the features
opFeatureCache = OpBlockedArrayCache(self.g)
opFeatureCache.inputs["innerBlockShape"].setValue((1,32,32,32,16))
opFeatureCache.inputs["outerBlockShape"].setValue((1,128,128,128,64))
opFeatureCache.inputs["Input"].connect(opPF.outputs["Output"])
opFeatureCache.inputs["fixAtCurrent"].setValue(False)
self.opFeatureCache=opFeatureCache
self.initLabels()
self.dataReadyToView.emit()
示例5: ObjectExtractionGui
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
class ObjectExtractionGui(LayerViewerGui):
def setupLayers(self):
mainOperator = self.topLevelOperatorView
layers = []
if mainOperator.ObjectCenterImage.ready():
self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
#layer = RGBALayer(red=ConstantSource(255), alpha=self.centerimagesrc)
redct = [0, QColor(255, 0, 0).rgba()]
layer = ColortableLayer(self.centerimagesrc, redct)
layer.name = "Object Centers"
layer.visible = False
layers.append(layer)
ct = colortables.create_default_16bit()
if mainOperator.LabelImage.ready():
self.objectssrc = LazyflowSource(mainOperator.LabelImage)
self.objectssrc.setObjectName("LabelImage LazyflowSrc")
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
layer = ColortableLayer(self.objectssrc, ct)
layer.name = "Label Image"
layer.visible = False
layer.opacity = 0.5
layers.append(layer)
# white foreground on transparent background
binct = [QColor(0, 0, 0, 0).rgba(), QColor(255, 255, 255, 255).rgba()]
if mainOperator.BinaryImage.ready():
self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
layer = ColortableLayer(self.binaryimagesrc, binct)
layer.name = "Binary Image"
layers.append(layer)
## raw data layer
self.rawsrc = None
self.rawsrc = LazyflowSource(mainOperator.RawImage)
self.rawsrc.setObjectName("Raw Lazyflow Src")
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
layers.insert(len(layers), layerraw)
mainOperator.RawImage.notifyReady(self._onReady)
mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)
if mainOperator.BinaryImage.meta.shape:
self.editor.dataShape = mainOperator.BinaryImage.meta.shape
mainOperator.BinaryImage.notifyMetaChanged(self._onMetaChanged)
return layers
def _onMetaChanged(self, slot):
#FiXME: why do we need that?
if slot is self.topLevelOperatorView.BinaryImage:
if slot.meta.shape:
self.editor.dataShape = slot.meta.shape
if slot is self.topLevelOperatorView.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.topLevelOperatorView.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def _onReady(self, slot):
if slot is self.topLevelOperatorView.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.topLevelOperatorView.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def initAppletDrawerUi(self):
# Load the ui file (find it in our own directory)
localDir = os.path.split(__file__)[0]
self._drawer = uic.loadUi(localDir+"/drawer.ui")
self._drawer.selectFeaturesButton.pressed.connect(self._selectFeaturesButtonPressed)
def _selectFeaturesButtonPressed(self):
featureDict = {}
mainOperator = self.topLevelOperatorView
slot = mainOperator.Features
if slot.ready():
selectedFeatures = mainOperator.Features([]).wait()
else:
selectedFeatures = None
plugins = pluginManager.getPluginsOfCategory('ObjectFeatures')
imgshape = list(mainOperator.RawImage.meta.shape)
axistags = mainOperator.RawImage.meta.axistags
imgshape.pop(axistags.index('t'))
fakeimg = np.empty(imgshape, dtype=np.float32)
labelshape = list(mainOperator.BinaryImage.meta.shape)
axistags = mainOperator.BinaryImage.meta.axistags
labelshape.pop(axistags.index('t'))
labelshape.pop(axistags.index('c') - 1)
#.........这里部分代码省略.........
示例6: initGraph
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
def initGraph(self):
shape = self.inputProvider.outputs["Output"].shape
srcs = []
minMax = []
print "* Data has shape=%r" % (shape,)
#create a layer for each channel of the input:
slicer=OpMultiArraySlicer2(self.g)
slicer.inputs["Input"].connect(self.inputProvider.outputs["Output"])
slicer.inputs["AxisFlag"].setValue('c')
nchannels = shape[-1]
for ich in xrange(nchannels):
if self._normalize_data:
data=slicer.outputs['Slices'][ich][:].allocate().wait()
#find the minimum and maximum value for normalization
mm = (numpy.min(data), numpy.max(data))
print " - channel %d: min=%r, max=%r" % (ich, mm[0], mm[1])
minMax.append(mm)
else:
minMax.append(None)
layersrc = LazyflowSource(slicer.outputs['Slices'][ich], priority = 100)
layersrc.setObjectName("raw data channel=%d" % ich)
srcs.append(layersrc)
#FIXME: we shouldn't merge channels automatically, but for now it's prettier
layer1 = None
if nchannels == 1:
layer1 = GrayscaleLayer(srcs[0], normalize=minMax[0])
layer1.set_range(0,minMax[0])
print " - showing raw data as grayscale"
elif nchannels==2:
layer1 = RGBALayer(red = srcs[0], normalizeR=minMax[0],
green = srcs[1], normalizeG=minMax[1])
layer1.set_range(0, minMax[0])
layer1.set_range(1, minMax[1])
print " - showing channel 1 as red, channel 2 as green"
elif nchannels==3:
layer1 = RGBALayer(red = srcs[0], normalizeR=minMax[0],
green = srcs[1], normalizeG=minMax[1],
blue = srcs[2], normalizeB=minMax[2])
layer1.set_range(0, minMax[0])
layer1.set_range(1, minMax[1])
layer1.set_range(2, minMax[2])
print " - showing channel 1 as red, channel 2 as green, channel 3 as blue"
else:
print "only 1,2 or 3 channels supported so far"
return
print
layer1.name = "Input data"
layer1.ref_object = None
self.layerstack.append(layer1)
self.workflow = PixelClassificationLazyflow( self.g, self.featScalesList, self.inputProvider.outputs["Output"])
self.initLabels()
self.startClassification()
self.dataReadyToView.emit()
示例7: ObjectExtractionGui
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
class ObjectExtractionGui(QWidget):
###########################################
### AppletGuiInterface Concrete Methods ###
###########################################
def centralWidget(self):
""" Return the widget that will be displayed in the main viewer area. """
return self.volumeEditorWidget
def appletDrawer(self):
return self._drawer
def menus(self):
return []
def viewerControlWidget(self):
return self._viewerControlWidget
def stopAndCleanUp(self):
pass
###########################################
###########################################
def __init__(self, topLevelOperatorView):
super(ObjectExtractionGui, self).__init__()
self.mainOperator = topLevelOperatorView
self.layerstack = LayerStackModel()
self._viewerControlWidget = None
self._initViewerControlUi()
self.editor = None
self._initEditor()
self._initAppletDrawerUi()
assert(self.appletDrawer() is not None)
self._initViewer()
def _onMetaChanged(self, slot):
if slot is self.mainOperator.BinaryImage:
if slot.meta.shape:
self.editor.dataShape = slot.meta.shape
if slot is self.mainOperator.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def _onReady(self, slot):
if slot is self.mainOperator.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def _initViewer(self):
mainOperator = self.mainOperator
# white foreground on transparent background
ct = [QColor(0, 0, 0, 0).rgba(),
QColor(255, 255, 255, 255).rgba()]
self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
layer = ColortableLayer(self.binaryimagesrc, ct)
layer.name = "Binary Image"
self.layerstack.append(layer)
ct = colortables.create_default_16bit()
self.objectssrc = LazyflowSource(mainOperator.LabelImage)
self.objectssrc.setObjectName("LabelImage LazyflowSrc")
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
layer = ColortableLayer(self.objectssrc, ct)
layer.name = "Label Image"
layer.visible = False
layer.opacity = 0.5
self.layerstack.append(layer)
self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
layer = RGBALayer(red=ConstantSource(255), alpha=self.centerimagesrc)
layer.name = "Object Centers"
layer.visible = False
self.layerstack.append(layer)
## raw data layer
self.rawsrc = None
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
self.rawsrc.setObjectName("Raw Lazyflow Src")
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.insert(len(self.layerstack), layerraw)
mainOperator.RawImage.notifyReady(self._onReady)
mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)
if mainOperator.BinaryImage.meta.shape:
#.........这里部分代码省略.........
示例8: ObjectExtractionGui
# 需要导入模块: from volumina.api import LazyflowSource [as 别名]
# 或者: from volumina.api.LazyflowSource import setObjectName [as 别名]
class ObjectExtractionGui(QWidget):
###########################################
### AppletGuiInterface Concrete Methods ###
###########################################
def centralWidget(self):
""" Return the widget that will be displayed in the main viewer area. """
return self.volumeEditorWidget
def appletDrawer(self):
return self._drawer
def menus(self):
return []
def viewerControlWidget(self):
return self._viewerControlWidget
def stopAndCleanUp(self):
pass
###########################################
###########################################
def __init__(self, topLevelOperatorView):
super(ObjectExtractionGui, self).__init__()
self.mainOperator = topLevelOperatorView
self.layerstack = LayerStackModel()
self._viewerControlWidget = None
self._initViewerControlUi()
self.editor = None
self._initEditor()
self._initAppletDrawerUi()
assert(self.appletDrawer() is not None)
self._initViewer()
def _onMetaChanged(self, slot):
if slot is self.mainOperator.BinaryImage:
if slot.meta.shape:
self.editor.dataShape = slot.meta.shape
if slot is self.mainOperator.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def _onReady(self, slot):
if slot is self.mainOperator.RawImage:
if slot.meta.shape and not self.rawsrc:
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.append(layerraw)
def _initViewer(self):
mainOperator = self.mainOperator
# white foreground on transparent background
ct = [QColor(0, 0, 0, 0).rgba(),
QColor(255, 255, 255, 255).rgba()]
self.binaryimagesrc = LazyflowSource(mainOperator.BinaryImage)
self.binaryimagesrc.setObjectName("Binary LazyflowSrc")
layer = ColortableLayer(self.binaryimagesrc, ct)
layer.name = "Binary Image"
self.layerstack.append(layer)
ct = colortables.create_default_16bit()
self.objectssrc = LazyflowSource(mainOperator.LabelImage)
self.objectssrc.setObjectName("LabelImage LazyflowSrc")
ct[0] = QColor(0, 0, 0, 0).rgba() # make 0 transparent
layer = ColortableLayer(self.objectssrc, ct)
layer.name = "Label Image"
layer.visible = False
layer.opacity = 0.5
self.layerstack.append(layer)
self.centerimagesrc = LazyflowSource(mainOperator.ObjectCenterImage)
layer = RGBALayer(red=ConstantSource(255), alpha=self.centerimagesrc)
layer.name = "Object Centers"
layer.visible = False
self.layerstack.append(layer)
## raw data layer
self.rawsrc = None
self.rawsrc = LazyflowSource(self.mainOperator.RawImage)
self.rawsrc.setObjectName("Raw Lazyflow Src")
layerraw = GrayscaleLayer(self.rawsrc)
layerraw.name = "Raw"
self.layerstack.insert(len(self.layerstack), layerraw)
mainOperator.RawImage.notifyReady(self._onReady)
mainOperator.RawImage.notifyMetaChanged(self._onMetaChanged)
#.........这里部分代码省略.........