本文整理汇总了Python中vmaf.config.VmafConfig.resource_path方法的典型用法代码示例。如果您正苦于以下问题:Python VmafConfig.resource_path方法的具体用法?Python VmafConfig.resource_path怎么用?Python VmafConfig.resource_path使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vmaf.config.VmafConfig
的用法示例。
在下文中一共展示了VmafConfig.resource_path方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from vmaf.config import VmafConfig [as 别名]
# 或者: from vmaf.config.VmafConfig import resource_path [as 别名]
def main():
dataset_filepaths = [
VmafConfig.resource_path('dataset', 'NFLX_dataset_public_raw_last4outliers.py'),
VmafConfig.resource_path('dataset', 'VQEGHD3_dataset_raw.py'),
]
# ============ sample results =================
subjective_model_classes = [
MaximumLikelihoodEstimationModel,
MosModel,
# MaximumLikelihoodEstimationDmosModel,
# DmosModel,
]
# plot_sample_results(dataset_filepaths, subjective_model_classes)
# ============ plot trends =================
# ===== datasize growth =====
# run_datasize_growth(dataset_filepaths)
# ===== corrpution growth =====
run_subject_corruption_growth(dataset_filepaths)
# run_random_corruption_growth(dataset_filepaths)
# run_subject_partial_corruption_growth(dataset_filepaths)
# ===== random missing growth =====
# run_missing_growth(dataset_filepaths)
# ===== synthetic data =====
# validate_with_synthetic_dataset()
plt.show()
示例2: validate_with_synthetic_dataset
# 需要导入模块: from vmaf.config import VmafConfig [as 别名]
# 或者: from vmaf.config.VmafConfig import resource_path [as 别名]
def validate_with_synthetic_dataset():
# use the dataset_filepath only for its dimensions and reference video mapping
dataset_filepath = VmafConfig.resource_path('dataset', 'NFLX_dataset_public_raw_last4outliers.py')
np.random.seed(0)
_validate_with_synthetic_dataset(
subjective_model_classes=[
MaximumLikelihoodEstimationModel
],
dataset_filepath=dataset_filepath,
synthetic_result={
'quality_scores': np.random.uniform(1, 5, 79),
'observer_bias': np.random.normal(0, 1, 30),
'observer_inconsistency': np.abs(np.random.uniform(0.0, 0.4, 30)),
'content_bias': np.random.normal(0, 0.00001, 9),
'content_ambiguity': np.abs(np.random.uniform(0.4, 0.6, 9)),
}
)
示例3: run_vmaf_cv
# 需要导入模块: from vmaf.config import VmafConfig [as 别名]
# 或者: from vmaf.config.VmafConfig import resource_path [as 别名]
__copyright__ = "Copyright 2016-2017, Netflix, Inc."
__license__ = "Apache, Version 2.0"
import matplotlib.pyplot as plt
import numpy as np
from vmaf.config import VmafConfig
from vmaf.routine import run_vmaf_cv, run_vmaf_kfold_cv
if __name__ == '__main__':
# ==== Run simple cross validation: one training and one testing dataset ====
run_vmaf_cv(
train_dataset_filepath=VmafConfig.resource_path('dataset', 'NFLX_dataset_public.py'),
test_dataset_filepath=VmafConfig.resource_path('dataset', 'VQEGHD3_dataset.py'),
param_filepath=VmafConfig.resource_path('param', 'vmaf_v3.py'),
output_model_filepath=VmafConfig.workspace_path('model', 'test_model1.pkl'),
)
# ==== Run cross validation across genres (tough test) ====
nflx_dataset_path = VmafConfig.resource_path('dataset', 'NFLX_dataset_public.py')
contentid_groups = [
[0, 5], # cartoon: BigBuckBunny, FoxBird
[1], # CG: BirdsInCage
[2, 6, 7], # complex: CrowdRun, OldTownCross, Seeking
[3, 4], # ElFuente: ElFuente1, ElFuente2
[8], # sports: Tennis
]
param_filepath = VmafConfig.resource_path('param', 'vmaf_v3.py')
示例4: setUp
# 需要导入模块: from vmaf.config import VmafConfig [as 别名]
# 或者: from vmaf.config.VmafConfig import resource_path [as 别名]
def setUp(self):
self.raw_dataset_filepath = VmafConfig.resource_path("dataset", "NFLX_dataset_public_raw.py")
self.derived_dataset_path = VmafConfig.workdir_path("test_derived_dataset.py")
self.derived_dataset_path_pyc = VmafConfig.workdir_path("test_derived_dataset.pyc")
示例5:
# 需要导入模块: from vmaf.config import VmafConfig [as 别名]
# 或者: from vmaf.config.VmafConfig import resource_path [as 别名]
from vmaf.config import VmafConfig
from vmaf.core.executor import run_executors_in_parallel
from vmaf.core.raw_extractor import DisYUVRawVideoExtractor
from vmaf.core.nn_train_test_model import ToddNoiseClassifierTrainTestModel
from vmaf.routine import read_dataset
from vmaf.tools.misc import import_python_file
# parameters
num_train = 500
num_test = 50
n_epochs = 30
seed = 0 # None
# read input dataset
dataset_path = VmafConfig.resource_path('dataset', 'BSDS500_noisy_dataset.py')
dataset = import_python_file(dataset_path)
assets = read_dataset(dataset)
# shuffle assets
np.random.seed(seed)
np.random.shuffle(assets)
assets = assets[:(num_train + num_test)]
raw_video_h5py_filepath = VmafConfig.workdir_path('rawvideo.hdf5')
raw_video_h5py_file = DisYUVRawVideoExtractor.open_h5py_file(raw_video_h5py_filepath)
print '======================== Extract raw YUVs =============================='
_, raw_yuvs = run_executors_in_parallel(
DisYUVRawVideoExtractor,