本文整理汇总了Python中vigra.readImage函数的典型用法代码示例。如果您正苦于以下问题:Python readImage函数的具体用法?Python readImage怎么用?Python readImage使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了readImage函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: use_ridge_regression
def use_ridge_regression():
# Read the command line arguments.
args = process_command_line()
im_orig = numpy.squeeze(vigra.readImage("cc_90.png"))
im = kernel_ridge_regression(im_orig, args.tau, args.rho, args.gamma)
vigra.impex.writeImage(im, "res.png")
im_true = numpy.squeeze(vigra.readImage("charlie-chaplin.jpg"))
print "MSE: ", calc_mse(im, im_true)
return 0
示例2: importStack
def importStack(path,fname):
absname = path +fname
zsize = vigra.impex.numberImages(absname)
im =vigra.readImage(absname, index = 0, dtype='FLOAT')
#vol = np.zeros([im.height,im.width,zsize])
vol = np.memmap('tmpVolDat/' + fname[0:-4],dtype='float64',mode = 'w+', shape = (im.height,im.width,zsize))
#raise('hallo')
for i in range(zsize):
print("importing slice " + str(i) + ' of file '+fname)
im=np.squeeze(vigra.readImage(absname, index = i, dtype='FLOAT'))
vol[:,:,i] = im
vol.flush()
return vol
示例3: bayesian_hp_optimization
def bayesian_hp_optimization(Q):
im = numpy.squeeze(vigra.readImage("cc_90.png"))
im_orig = numpy.squeeze(vigra.readImage("charlie-chaplin.jpg"))
P = []
E = []
# initialize
f = open("cache/bayes_opt.txt","w")
start = time.time()
#for i in range(20):
# interpolation = kernel_ridge_regression( im, Q[i,2], Q[i,0], Q[i,1] )
# P.append( [Q[i,0], Q[i,1], Q[i,2]] )
# E.append( calc_mse(im_orig, interpolation) )
# # save result
# res = str(Q[i,0]) + str(" ") + str(Q[i,1]) + str(" ") + str(Q[i,2]) + str(" ") + str(E[i]) + '\n'
# f.write(res)
# f.flush()
save = numpy.loadtxt("cache/save.txt")
for d in save:
P.append( [d[0], d[1], d[2]] )
E.append( d[3] )
# TODO should we remove known vals from Q ?
# remove known values from Q
# Q = numpy.delete(Q, numpy.arange(20), axis=0)
# parameter for the matern regression
sig_rho = 8. / 10
sig_gamma = 3. / 10
sig_tau = .9 / 10
lambd = .3
for i in range(20):
mse, var = matern_regression(Q, P, E, sig_rho, sig_gamma, sig_tau, lambd)
#utility = numpy.divide( mse, numpy.sqrt(var) )
utility = numpy.abs(numpy.divide( mse, var ) )
best_hp = numpy.nanargmin(utility)
P.append( Q[best_hp])
print Q[best_hp]
print utility[best_hp], mse[best_hp], var[best_hp]
interpolation = kernel_ridge_regression( im, Q[best_hp,2], Q[best_hp,0], Q[best_hp,1])
E.append( calc_mse(im_orig, interpolation))
res = str(Q[best_hp,0]) + str(" ") + str(Q[best_hp,1]) + str(" ") + str(Q[best_hp,2]) + str(" ") + str(E[-1]) + '\n'
f.write(res)
f.flush()
stop = time.time()
print "Bayesian parameter optimization took %.02f seconds." % (stop-start)
best_hp = numpy.argmin(E)
f.close()
return P[best_hp], E[best_hp]
示例4: load_image
def load_image(self, filename=None):
# if filename is None:
# filename = self.image_name
# get input image
self.image_name = filename
self.set_image(vigra.readImage(filename))
示例5: setImage
def setImage(self, imagefilename, retainView=False):
self.image = vigra.readImage(imagefilename)
shapefactor = self.image.shape[0]/5000
self.imagedisplay = vigra.sampling.resizeImageNoInterpolation(self.image, (self.image.shape[0]/shapefactor, self.image.shape[1]/shapefactor))
self.imagedisplay = vigra.colors.brightness(vigra.colors.linearRangeMapping(self.imagedisplay), 35.)
super(S57QImageViewer, self).setImage(self.imagedisplay.qimage(), retainView)
self.geoimage = GeoImage(imagefilename)
示例6: kernel_ridge_regression
def kernel_ridge_regression(tau, sigma):
# Load the image.
im_orig = numpy.squeeze(vigra.readImage("cc_90.png"))
# Make a copy, so both the original and the regressed image can be shown afterwards.
im = numpy.array(im_orig)
# Find the known pixels and the pixels that shall be predicted.
known_ind = numpy.where(im != 0)
unknown_ind = numpy.where(im >= 0)
known_x = numpy.array(known_ind).transpose()
known_y = numpy.array(im[known_ind])
pred_x = numpy.array(unknown_ind).transpose()
# Train and predict with the given regressor.
start = time.time()
print "training..."
r = KernelRidgeRegressor(tau, sigma)
r.train(known_x, known_y)
print "done training"
# pickle.dump(r, open("regressor.p", "wb"))
# r = pickle.load(open("regressor.p", "rb"))
print "predicting..."
pred_y = r.predict(pred_x)
print "done predicting"
# Write the predicted values back into the image and show the result.
im[unknown_ind] = pred_y
stop = time.time()
print "Train and predict took %.02f seconds." % (stop-start)
vigra.impex.writeImage(im, "res.png")
示例7: load_image
def load_image(self, file_):
if not self._image_cache.has_key(file_):
image = vigra.readImage(file_)
# numpy array convention
image.swapaxes(0, 1)
self._image_cache[file_] = np.squeeze(image)
return self._image_cache[file_]
示例8: addBackgroundWithFrame
def addBackgroundWithFrame(self, bgImageFilename, container = True, **params):
"""fe.addBackgroundWithFrame(bgImageFilename, depth = 85, ...)
Adds a picture object to the fig.File, framed by an additional
rectangle. See addROIRect() and addImage(). If no roi is
given (via a keyword parameter), the image file is opened
(using readImage) and its size is used to initialize a
BoundingBox positioned at the origin.
Returns the pair (bgImage, bgRect) of both added fig objects."""
if not params.has_key("roi") and not self.roi:
size = readImage(bgImageFilename).size()
params["roi"] = Rect2D(size)
if container == True:
container = self.f
if not params.has_key("depth"):
params["depth"] = 1
bgRect = self.addROIRect(**params)
bgImage = fig.PictureBBox(0, 0, 1, 1, bgImageFilename)
bgImage.points = list(bgRect.points)
bgImage.depth = 999
container.append(bgImage)
return bgImage, bgRect
示例9: extractMarkedNodes
def extractMarkedNodes(filename):
# extracts markers from the raw images
# returns a dict, with color as key and a list
# of marker center coords as value
print "processing file", filename
im = vigra.readImage(filename)
colored1 = im[..., 0] != im[..., 1]
colored2 = im[..., 1] != im[..., 2]
colored3 = im[..., 2] != im[..., 0]
colored = numpy.logical_or(colored1, colored2)
colored = numpy.logical_or(colored, colored3)
cc = vigra.analysis.labelImageWithBackground(colored.astype(numpy.uint8))
# take the center pixel for each colored square
feats = vigra.analysis.extractRegionFeatures(colored.astype(numpy.float32), cc, ["RegionCenter"])
center_coords = feats["RegionCenter"][1:][:].astype(numpy.uint32)
center_coords_list = [center_coords[:, 0], center_coords[:, 1]]
im_centers = numpy.asarray(im[center_coords_list])
# print im_centers
# struct = im_centers.view(dtype='f4, f4, f4')
# colors, indices = numpy.unique(struct, return_inverse=True)
# print colors, indices, colors.shape
centers_by_color = {}
for iindex in range(center_coords.shape[0]):
center = (center_coords[iindex][0], center_coords[iindex][1])
#print center, index
color = colors[tuple(im_centers[iindex].astype(numpy.uint8))]
#centers_by_color.setdefault(tuple(im_centers[iindex]), []).append(center)
centers_by_color.setdefault(color, []).append(center)
print centers_by_color
return centers_by_color
示例10: get_data
def get_data(self, data_nr):
"""Returns the dataset.
:param data_nr: number of dataset
:return: the dataset
"""
if self._datatype(data_nr) == "hdf5" or self.is_internal(data_nr):
return vigra.readHDF5(self.get_data_path(data_nr), self.get_data_key(data_nr))
else:
return vigra.readImage(self.get_data_path(data_nr))
示例11: _execute_5d
def _execute_5d(self, roi, result):
t_start, x_start, y_start, z_start, c_start = roi.start
t_stop, x_stop, y_stop, z_stop, c_stop = roi.stop
for result_t, t in enumerate( range( t_start, t_stop ) ):
file_name = self.fileNameList[t]
for result_z, z in enumerate( range( z_start, z_stop ) ):
img = vigra.readImage( file_name, index=z )
result[result_t, :, :, result_z, :] = img[ x_start:x_stop,
y_start:y_stop,
c_start:c_stop ]
return result
示例12: random_hp_optimization
def random_hp_optimization(Q):
f = open("cache/rand_opt.txt","w")
image = numpy.squeeze(vigra.readImage("cc_90.png"))
im_orig = numpy.squeeze(vigra.readImage("charlie-chaplin.jpg"))
start = time.time()
P = []
E = []
N = Q.shape[0]
rand_indices = numpy.random.randint(0, N, size = 40)
for i in rand_indices:
interpolation = kernel_ridge_regression( image, Q[i,2], Q[i,0], Q[i,1] )
P.append( [Q[i,0], Q[i,1], Q[i,2]] )
E.append( calc_mse(im_orig, interpolation) )
res = str(Q[i,0]) + str(" ") + str(Q[i,1]) + str(" ") + str(Q[i,2]) + str(" ") + str(E[-1]) + '\n'
f.write(res)
f.flush()
rand_hp = numpy.argmin(E)
stop = time.time()
print "Random parameter optimization took %.02f seconds." % (stop-start)
f.close()
return P[rand_hp], E[rand_hp]
示例13: main
def main(filename, biScale = 1.6, saddleThreshold = 0.2):
"""Creates an initial GeoMap ("level 0" of irregular pyramid) using
subpixel watersheds on a Gaussian gradient boundary indicator and
creates a Workspace from that."""
import bi_utils
img = vigra.readImage(filename)
gm, grad = bi_utils.gaussianGradient(img, biScale)
wsm = maputils.subpixelWatershedMap(
gm, saddleThreshold = saddleThreshold)
return Workspace(wsm, img, bi = gm)
示例14: volume_from_dir
def volume_from_dir(dirpattern, output_filepath, offset=0, nfiles=None):
filelist = glob.glob(dirpattern)
filelist = sorted(filelist, key=str.lower) #mwahaha, 10000<9000
begin = offset
if nfiles is not None and offset+nfiles<len(filelist):
end=offset+nfiles
else:
end = len(filelist)
filelist = filelist[begin:end]
nx, ny = vigra.readImage(filelist[0]).squeeze().shape
dt = vigra.readImage(filelist[0]).dtype
nz = len(filelist)
volume = numpy.zeros((nx, ny, nz, 1), dtype=dt)
for i in range(len(filelist)):
volume[:, :, i, 0] = vigra.readImage(filelist[i]).squeeze()[:]
outfile = h5py.File(output_filepath, "w")
outfile.create_dataset("data", data=volume)
outfile.close()
return volume
示例15: makeTif
def makeTif(pathSearch, pathSave, filename):
frameNum = os.path.splitext(filename)[0][-5:]; begName = os.path.splitext(filename)[0][:-5]; ext = os.path.splitext(filename)[1]
newFrameNum = '{:0>5}'.format(int(frameNum)*30)
try:
im=vigra.readImage(os.path.join(pathSearch, filename))
except IOError:
print "File pbl with file ", filename
return 0
else:
im2=vigra.Image(im, dtype=np.uint8)
im2[im2>0]=1
im2.writeImage(os.path.join(pathSave, 'Mask_'+begName+newFrameNum+ext))
return 1