本文整理汇总了Python中utils.normalize函数的典型用法代码示例。如果您正苦于以下问题:Python normalize函数的具体用法?Python normalize怎么用?Python normalize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normalize函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate_one_percent
def evaluate_one_percent(self):
"""
evaluate one percent of all fonts
"""
if self.percent >= len(self.df_percents):
self.got_results = True
return False
norm_user_img = utils.normalize(self.user_image)
fonts = self.df_percents[self.percent]['aws_bucket_key']
indices = [(self.font_index_map[font]) for font in fonts]
imgs = self.char_array[indices]
norm_imgs = np.zeros(imgs.shape)
for i in range(imgs.shape[0]):
norm_imgs[i] = utils.normalize(imgs[i])
norm_imgs.shape = (norm_imgs.shape[0], norm_imgs.shape[1]*norm_imgs.shape[2])
predictions = self.nn.predict_proba(norm_imgs)
scores = np.divide(predictions[:,0], np.max(predictions[:,1:], axis=1))
self.scores.update(dict(zip(fonts, scores)))
self.percent += 1
if self.percent % 10 == 0:
print '{0}% fonts evaluated'.format(self.percent)
return True
示例2: add_doc_attributes
def add_doc_attributes(doc):
doc_json = proposal_utils.doc_info(doc)
properties = extract.get_properties(doc_json)
for name, value in properties.items():
logger.info("Adding %s attribute", name)
published = doc.published or datetime.now()
handle = normalize(name)
try:
attr = Attribute.objects.get(proposal=doc.proposal,
handle=handle)
except Attribute.DoesNotExist:
attr = Attribute(proposal=doc.proposal,
name=name,
handle=normalize(name),
published=published)
attr.set_value(value)
else:
# TODO: Either mark the old attribute as stale and create a
# new one or create a record that the value has changed
if published > attr.published:
attr.clear_value()
attr.set_value(value)
attr.save()
add_doc_events(doc, properties)
return doc
示例3: album
def album(self, album):
title = normalize(album.name)
# TODO album years
#if Prefs["displayAlbumYear"] and album.getYear() != 0:
# title = "%s (%s)" % (title, album.getYear())
cover_url = self.image(album.covers)
track_count = None
if album.discs:
track_count = len(album.discs[0].tracks)
return DirectoryObject(
key=route_path('album', album.uri),
#rating_key=album.uri,
title=title,
tagline=', '.join([normalize(ar.name) for ar in album.artists]),
#track_count=track_count,
art=cover_url,
thumb=cover_url,
)
示例4: triangle
def triangle(i, amp, phase=0):
phase = normalize(phase, 360)
i = normalize(i + phase/360.)
if i < 0.5:
return amp * 2 * i
else:
return amp * 2 * (1 - i)
示例5: _tick
def _tick(self):
if self.has_rock:
# Try to drop at base.
if self._drop_available():
self.has_rock = False
self.world.rock_collected()
return
# Call for a carrier to pick up.
self._broadcast_come_message()
# Head towards base if carriers not available.
if not self.world.carriers:
self.dx, self.dy = normalize(self.world.mars_base.x - self.x,
self.world.mars_base.y - self.y)
else:
return
else:
# Pick up.
rock = self._rock_available()
if rock:
self.has_rock = True
self.world.remove_entity(rock)
return
# Head towards rock.
rock = self._sense_rock()
if rock:
self.dx, self.dy = normalize(rock.x - self.x, rock.y - self.y)
# Keep walkin'.
while not self._can_move():
self.dx, self.dy = self._get_new_direction()
self._move()
示例6: track
def track(self, track, index=None):
rating_key = track.uri
if index is not None:
rating_key = '%s::%s' % (track.uri, index)
cover_url = self.image(track.album.covers)
return TrackObject(
items=[
MediaObject(
parts=[PartObject(
key=self.client.track_url(track),
duration=int(track.duration)
)],
duration=int(track.duration),
container=Container.MP3,
audio_codec=AudioCodec.MP3
)
],
key=route_path('metadata', str(track.uri)),
rating_key=quote(rating_key),
title=normalize(track.name),
album=normalize(track.album.name),
artist=', '.join([normalize(ar.name) for ar in track.artists]),
index=int(track.number),
duration=int(track.duration),
art=cover_url,
thumb=cover_url
)
示例7: square
def square(i, amp, phase=0):
phase = normalize(phase, 360)
i = normalize(i + phase/360.)
if i < 0.5:
return 0
else:
return amp
示例8: SIM
def SIM(saliency_map1, saliency_map2):
'''
Similarity between two different saliency maps when viewed as distributions
(SIM=1 means the distributions are identical).
This similarity measure is also called **histogram intersection**.
Parameters
----------
saliency_map1 : real-valued matrix
If the two maps are different in shape, saliency_map1 will be resized to match saliency_map2.
saliency_map2 : real-valued matrix
Returns
-------
SIM : float, between [0,1]
'''
map1 = np.array(saliency_map1, copy=False)
map2 = np.array(saliency_map2, copy=False)
if map1.shape != map2.shape:
map1 = resize(map1, map2.shape, order=3, mode='nearest') # bi-cubic/nearest is what Matlab imresize() does by default
# Normalize the two maps to have values between [0,1] and sum up to 1
map1 = normalize(map1, method='range')
map2 = normalize(map2, method='range')
map1 = normalize(map1, method='sum')
map2 = normalize(map2, method='sum')
# Compute histogram intersection
intersection = np.minimum(map1, map2)
return np.sum(intersection)
示例9: write_xml
def write_xml(matching, f):
""" `matching` contains a list of pairs (tagged_string, its_superstring)
Tagged superstrings are written to the file `f'
"""
for (tagged, raw) in matching:
print >>f, '<aff>'
#print tagged, raw
i = 0
tag_to_write = None
for c in tagged:
if not normalize(c):
continue
if len(c) > 1 and c[1] == '/': # closing tag
f.write(c)
elif len(c) > 1: # opening tag
if tag_to_write:
f.write(tag_to_write)
tag_to_write = None
tag_to_write = c
else:
while normalize(raw[i]) != normalize(c):
f.write(xml_escape(raw[i]))
i += 1
if tag_to_write:
f.write(tag_to_write)
tag_to_write = None
f.write(xml_escape(raw[i]))
i += 1
f.write(''.join(xml_escape(c) for c in raw[i:]))
print >>f
print >>f, '</aff>'
示例10: generate_smooth_normals
def generate_smooth_normals(vertices, faces):
print "generating normals for", vertices.shape[0], "vertices"
vertex_normals = [[] for _ in xrange(vertices.shape[0])]
print len(vertex_normals), "vertices"
normalize = lambda n: n / numpy.sqrt(numpy.sum(n ** 2))
for i in range(faces.shape[0]):
face_vertices = faces[i, :]
v1, v2, v3 = [vertices[face_vertices[j], :] for j in range(3)]
n = normalize(numpy.cross(v2 - v1, v3 - v1))
for v in face_vertices:
vertex_normals[v].append(n)
normals = numpy.ones(vertices.shape)
for i in range(normals.shape[0]):
if len(vertex_normals[i]) == 0:
print "WARNING: no normal for vertex", i
continue
avg_normal = numpy.mean(numpy.vstack(vertex_normals[i]), 0)
normals[i, :] = normalize(avg_normal)
return normals
示例11: normalize_dataset
def normalize_dataset(dataset):
fiveMinuteMean = dataset['fiveMinuteMean']
trafficVolume = dataset['trafficVolume']
actualTravelTime = dataset['actualTravelTime']
dataset['fiveMinuteMean'] = normalize(fiveMinuteMean, min(fiveMinuteMean), max(fiveMinuteMean))
dataset['trafficVolume'] = normalize(trafficVolume, min(trafficVolume), max(trafficVolume))
dataset['actualTravelTime'] = normalize(actualTravelTime, min(actualTravelTime), max(actualTravelTime))
示例12: get_left_elbow_yaw
def get_left_elbow_yaw(kinect_pos, shoulder_roll=None, shoulder_pitch=None, world=None):
if world is None:
world = get_robot_world(kinect_pos)
if shoulder_roll is None:
shoulder_roll = get_left_shoulder_roll(kinect_pos, world)
if shoulder_pitch is None:
shoulder_pitch = get_left_shoulder_pitch(kinect_pos, world)
shoulder = kinect_pos[kinecthandler.joints_map[joints.SHOULDER_LEFT]]
elbow = kinect_pos[kinecthandler.joints_map[joints.ELBOW_LEFT]]
wrist = kinect_pos[kinecthandler.joints_map[joints.WRIST_LEFT]]
pitch_matrix = np.matrix([[1, 0, 0],
[0, np.cos(shoulder_pitch), -np.sin(shoulder_pitch)],
[0, np.sin(shoulder_pitch), np.cos(shoulder_pitch)]])
roll_matrix = np.matrix([[np.cos(shoulder_roll), 0, np.sin(shoulder_roll)],
[0, 1, 0],
[-np.sin(shoulder_roll), 0, np.cos(shoulder_roll)]])
transform = world[0] * pitch_matrix * roll_matrix
elbow_shoulder = utils.get_vector(shoulder, elbow, transform=transform)
elbow_shoulder = utils.normalize(elbow_shoulder)
modified_elbow = [elbow[0], elbow[1] + 2, elbow[2]]
elbow_vertical = utils.get_vector(modified_elbow, elbow, transform=transform)
elbow_wrist = utils.get_vector(wrist, elbow, transform=transform)
elbow_wrist = utils.normalize([elbow_wrist[0], elbow_wrist[1]])
cross_arm = np.cross(elbow_vertical, elbow_shoulder)
cross_arm = utils.normalize([cross_arm[0], cross_arm[1]])
# cross_arm = np.array([cross_arm[0], cross_arm[1]])
# elbow_wrist = np.array([elbow_wrist[0], elbow_wrist[1]])
sign = -1
if elbow_wrist[1] > 0:
sign = 1
dot = utils.normalized_dot(elbow_wrist, cross_arm)
return sign * (np.arccos(dot))
示例13: random_rhyme
def random_rhyme(self):
c1 = 'a'
c2 = 'a'
while not rhymes_with(c1, c2, self.span):
c1 = normalize(random.choice(self.words))
c2 = normalize(random.choice(self.words))
return (c1, c2)
示例14: generate_features
def generate_features(self):
# prepare variables
img_lab = rgb2lab(self._img)
segments = slic(img_lab, n_segments=500, compactness=30.0, convert2lab=False)
max_segments = segments.max() + 1
# create x,y feather
shape = self._img.shape
a = shape[0]
b = shape[1]
x_axis = np.linspace(0, b - 1, num=b)
y_axis = np.linspace(0, a - 1, num=a)
x_coordinate = np.tile(x_axis, (a, 1,)) # 创建X轴的坐标表
y_coordinate = np.tile(y_axis, (b, 1,)) # 创建y轴的坐标表
y_coordinate = np.transpose(y_coordinate)
coordinate_segments_mean = np.zeros((max_segments, 2))
# create lab feather
img_l = img_lab[:, :, 0]
img_a = img_lab[:, :, 1]
img_b = img_lab[:, :, 2]
img_segments_mean = np.zeros((max_segments, 3))
for i in xrange(max_segments):
segments_i = segments == i
coordinate_segments_mean[i, 0] = x_coordinate[segments_i].mean()
coordinate_segments_mean[i, 1] = y_coordinate[segments_i].mean()
img_segments_mean[i, 0] = img_l[segments_i].mean()
img_segments_mean[i, 1] = img_a[segments_i].mean()
img_segments_mean[i, 2] = img_b[segments_i].mean()
# element distribution
wc_ij = np.exp(-cdist(img_segments_mean, img_segments_mean) ** 2 / (2 * self._sigma_distribution ** 2))
wc_ij = wc_ij / wc_ij.sum(axis=1)[:, None]
mu_i = np.dot(wc_ij, coordinate_segments_mean)
distribution = np.dot(wc_ij, np.linalg.norm(coordinate_segments_mean - mu_i, axis=1) ** 2)
distribution = normalize(distribution)
distribution = np.array([distribution]).T
# element uniqueness feature
wp_ij = np.exp(
-cdist(coordinate_segments_mean, coordinate_segments_mean) ** 2 / (2 * self._sigma_uniqueness ** 2))
wp_ij = wp_ij / wp_ij.sum(axis=1)[:, None]
uniqueness = np.sum(cdist(img_segments_mean, img_segments_mean) ** 2 * wp_ij, axis=1)
uniqueness = normalize(uniqueness)
uniqueness = np.array([uniqueness]).T
# save features and variables
self.img_lab = img_lab
self.segments = segments
self.img_segments_mean = img_segments_mean
self.coordinate_segments_mean = coordinate_segments_mean
self.uniqueness = uniqueness
self.distribution = distribution
示例15: rhymes_with
def rhymes_with(c1, c2, span):
w1 = normalize(c1)
w2 = normalize(c2)
if len(w1) < 3 or len(w2) < 3:
return False
if w1 in w2 or w2 in w1:
return False
return get_end(w1, span) == get_end(w2, span)