本文整理汇总了Python中utils.get_path函数的典型用法代码示例。如果您正苦于以下问题:Python get_path函数的具体用法?Python get_path怎么用?Python get_path使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_path函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, data_fold=None, full_dataset=False, out_path=None, in_path=None, output_patches=False, scale=1.5, minSize=(200,200), windowSize=(40,40), stepSize=15):
self.scale = scale
self.minSize = minSize
self.windowSize = windowSize
self.output_patches = output_patches
self.stepSize = stepSize if self.output_patches == False else 30
self.total_window_num = 0
if data_fold is None:
self.data_fold = utils.TRAINING if self.output_patches or full_dataset else utils.VALIDATION
else:
self.data_fold = data_fold
self.in_path = in_path if in_path is not None else utils.get_path(in_or_out=utils.IN, data_fold=self.data_fold, full_dataset=full_dataset)
self.img_names = [img_name for img_name in os.listdir(self.in_path) if img_name.endswith('.jpg')]
self.img_names = self.img_names[:20] if DEBUG else self.img_names
self.detections = Detections()
folder_name = 'scale{}_minSize{}-{}_windowSize{}-{}_stepSize{}_dividedSizes/'.format(self.scale, self.minSize[0], self.minSize[1],
self.windowSize[0], self.windowSize[1], self.stepSize)
self.out_path = out_path if out_path is not None else '{}'.format(utils.get_path(full_dataset=True, in_or_out=utils.OUT, slide=True, data_fold=self.data_fold, out_folder_name=folder_name))
self.evaluation = Evaluation(full_dataset=full_dataset, method='slide',folder_name=folder_name, save_imgs=False, out_path=self.out_path,
detections=self.detections, in_path=self.in_path)
示例2: _export_datasets
def _export_datasets(dataset, features, classes, origin, sufix):
from itertools import combinations
from tasks.linker import params
from multiprocessing.pool import Pool
nfolds = 3
folds = [i for i in range(nfolds)]
partitions = [list(c) + list((set(folds) - set(c))) for c in combinations(folds, 2)]
datasets = _fold(dataset, nfolds)
for pt in partitions:
training = []
for i in pt[:-1]:
training.extend(datasets[i])
test = datasets[pt[-1]]
name_ = 'all{}{}{}'.format(origin, sufix + '_tr', pt[-1])
filename = get_path('datasets', '{}.arff'.format(name_))
classes_ = [next((v['short_name'] for k, v in params.items() if v['metadata_uri'] == c), None) for c in classes]
dataset_ = ([d, classes_] for d in _chunks(training, os.cpu_count()))
with Pool(os.cpu_count()) as p: sets_ = p.starmap(_expand, dataset_); dataset_ = []
for s in sets_: dataset_.extend(s)
with Pool(os.cpu_count()) as p: dataset_ = p.map(_flatten, dataset_)
_save(dataset_, features, 'class', name_, filename)
name_ = 'all{}{}{}'.format(origin, sufix + '_tt', pt[-1])
filename = get_path('datasets', '{}.arff'.format(name_))
dataset_ = ([l, classes_] for l in test)
with Pool(os.cpu_count()) as p: dataset_ = p.starmap(_concat, dataset_)
with Pool(os.cpu_count()) as p: dataset_ = p.map(_flatten, dataset_)
_save_test(dataset_, features, 'class', name_, filename)
示例3: main
def main(pickled_evaluation=False, combo_f_name=None, output_patches=True,
detector_params=None, original_dataset=True, save_imgs=True, data_fold=utils.VALIDATION):
combo_f_name = None
try:
opts, args = getopt.getopt(sys.argv[1:], "f:")
except getopt.GetoptError:
sys.exit(2)
print 'Command line failed'
for opt, arg in opts:
if opt == '-f':
combo_f_name = arg
assert combo_f_name is not None
detector = viola_detector_helpers.get_detectors(combo_f_name)
viola = False if data_fold == utils.TRAINING else True
in_path = utils.get_path(viola=viola, in_or_out=utils.IN, data_fold=data_fold)
#name the output_folder
folder_name = ['combo'+combo_f_name]
for k, v in detector_params.iteritems():
folder_name.append('{0}{1}'.format(k,v))
folder_name = '_'.join(folder_name)
out_path = utils.get_path(out_folder_name=folder_name, viola=True, in_or_out=utils.OUT, data_fold=data_fold)
out_path = 'output_viola_uninhabited/'
viola = ViolaDetector(pickled_evaluation=pickled_evaluation, output_patches=output_patches,
out_path=out_path, in_path=in_path, folder_name = folder_name,
save_imgs=save_imgs, detector_names=detector, **detector_params)
return viola
示例4: predict_target_with_query
def predict_target_with_query(
sparql, query, source, timeout=TIMEOUT, limit=LIMIT):
"""Predicts target with given query.
For example for pagerank_bidi:
SELECT distinct(?target) ?score {
{ dbr:Circle ?p ?target .}
UNION
{ ?target ?q dbr:Circle . }
?target dbo:wikiPageRank ?score
}
ORDER BY DESC(?score)
LIMIT 100
"""
q = query % {'source': source.n3()}
q += '\nLIMIT %d' % limit
t, q_res = gp_query._query(sparql, timeout, q)
res_rows_path = ['results', 'bindings']
bindings = sparql_json_result_bindings_to_rdflib(
get_path(q_res, res_rows_path, default=[])
)
target_scores = [
(get_path(row, [TARGET_VAR]), get_path(row, [Variable('score')]))
for row in bindings]
# print(target_scores)
return target_scores
示例5: main
def main():
script_dirname = os.path.abspath(os.path.dirname(__file__))
output_patches = False
fold = utils.TRAINING if output_patches else utils.VALIDATION
#only use this path to get the names of the files you want to use
in_path = utils.get_path(in_or_out=utils.IN, data_fold=fold)
in_path_selective = script_dirname+'/' #this is where the files actually live
img_names = [img for img in os.listdir(in_path) if img.endswith('jpg')]
image_filenames = [in_path_selective+img for img in os.listdir(in_path) if img.endswith('jpg')]
#get the proposals
k, scale = get_parameters()
sim = 'all'
color = 'hsv'
cmd = 'selective_search'
if cmd == 'selective_search':
folder_name = 'k{}_scale{}_sim{}_color{}_FIXING/'.format(k, scale, sim, color)
else:
folder_name = 'selectiveRCNN/'
print 'Folder name is: {}'.format(folder_name)
with Timer() as t:
boxes = get_windows(image_filenames, script_dirname, cmd=cmd, k=k, scale=scale)
print 'Time to process {}'.format(t.secs)
detections = Detections()
detections.total_time = t.secs
out_path = utils.get_path(selective=True, in_or_out=utils.OUT, data_fold=fold, out_folder_name=folder_name)
evaluation = Evaluation(#use_corrected_roofs=True,
report_name='report.txt', method='windows',
folder_name=folder_name, out_path=out_path,
detections=detections, in_path=in_path)
#score the proposals
for img, proposals in zip(img_names, boxes):
print 'Evaluating {}'.format(img)
print("Found {} windows".format(len(proposals)))
proposals = selectionboxes2polygons(proposals)
detections.set_detections(detection_list=proposals,roof_type='metal', img_name=img)
detections.set_detections(detection_list=proposals,roof_type='thatch', img_name=img)
print 'Evaluating...'
evaluation.score_img(img, (1200,2000))
evaluation.save_images(img)
save_training_TP_FP_using_voc(evaluation, img_names, in_path_selective, out_folder_name=folder_name, neg_thresh=0.3)
evaluation.print_report()
with open(out_path+'evaluation.pickle', 'wb') as f:
pickle.dump(evaluation, f)
示例6: _ask_chunk_result_extractor
def _ask_chunk_result_extractor(q_res, _vars, _ret_val_mapping):
chunk_res = {}
res_rows_path = ['results', 'bindings']
bindings = sparql_json_result_bindings_to_rdflib(
get_path(q_res, res_rows_path, default=[])
)
for row in bindings:
row_res = tuple([get_path(row, [v]) for v in _vars])
stps = _ret_val_mapping[row_res]
chunk_res.update({stp: True for stp in stps})
return chunk_res
示例7: _var_subst_chunk_result_ext
def _var_subst_chunk_result_ext(q_res, _sel_var_and_vars, _, **kwds):
var, _vars = _sel_var_and_vars
chunk_res = Counter()
res_rows_path = ['results', 'bindings']
bindings = sparql_json_result_bindings_to_rdflib(
get_path(q_res, res_rows_path, default=[])
)
for row in bindings:
row_res = get_path(row, [var])
count_res = int(get_path(row, [COUNT_VAR], '0'))
chunk_res[row_res] += count_res
return chunk_res
示例8: _combined_chunk_res
def _combined_chunk_res(q_res, _vars, _ret_val_mapping):
chunk_res = {}
res_rows_path = ['results', 'bindings']
bindings = sparql_json_result_bindings_to_rdflib(
get_path(q_res, res_rows_path, default=[])
)
for row in bindings:
row_res = tuple([get_path(row, [v]) for v in _vars])
stps = _ret_val_mapping[row_res]
ask_res = int(get_path(row, [ASK_VAR], '0'))
count_res = int(get_path(row, [COUNT_VAR], '0'))
chunk_res.update({stp: (ask_res, count_res) for stp in stps})
return chunk_res
示例9: _load_statistics
def _load_statistics():
global _statistics
filename = get_path('datasets' , 'statistics.json')
_statistics = load_data(filename, verbose=False)
if not _statistics or not isinstance(_statistics, dict) :
_statistics = {}
print ('')
示例10: fetch_all
async def fetch_all():
"""Fetch pdf files."""
with get_path("answers").open() as answers_file:
nsolved = sum(1 for line in answers_file)
cookies = {
'DYNSRV': 'lin-10-170-0-31',
'PHPSESSID': 'a4fb01c0de27e200683b4d556461b5aa',
'keep_alive': '1119831347%23333574%233PpV0T6RtnqnCB6GNF4PvEH1TiEX1nlc'
}
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0',
}
async with aiohttp.ClientSession(cookies=cookies, headers=headers) as session:
coros = [fetch_one(session, num) for num in range(1, nsolved + 1)]
results = await asyncio.gather(*coros)
files = 0
for num in results:
if num is not None:
print(f'Saved a file for problem {num}')
files += 1
return files
示例11: __init__
def __init__(self, config, test=False, target=None):
self._cwd = os.getcwd()
self._root = get_path()
self._config = config
self._test = test
self._target = target
try:
self._skeleton_path = resource_filename(__name__, os.path.join('skeleton', 'default'))
except NotImplementedError:
self._skeleton_path = os.path.join(sys.prefix, 'skeleton', 'default')
try:
self._assetPath = os.path.join(resource_filename(__name__, os.path.join('assets', 'manage.py')))
except NotImplementedError:
self._assetPath = os.path.join(sys.prefix, 'assets', 'manage.py')
self._projectName = self._config['name']
if 'deployment_path' in self._config:
self._deployment_path = self._config['deployment_path']
else:
self._deployment_path = ''
if 'zip_path' in self._config:
self._zip_path = self._config['zip_path']
else:
self._zip_path = ''
if 'doc_path' in self._config:
self._doc_path = self._config['doc_path']
else:
self._doc_path = ''
示例12: main
def main():
size = 40
total = spanning = 0
graph = Graph(size)
with get_path("data", "network.txt").open() as data_file:
for u, line in enumerate(data_file):
for v, w in enumerate(line.rstrip().split(",")):
if v > u and w != "-":
w = int(w)
total += w
graph.insert_edge(u, v, w)
# Implement the Prim–Jarník algorithm
D = [float("inf")] * size
root = 0 # can be any vertex of the graph
heap = [(0, root)]
seen = [False] * size
while heap:
w, u = heappop(heap)
if not seen[u]:
spanning += w
seen[u] = True
for e in graph.incident_edges(u):
v = e.opposite(u)
if e.weight < D[v]:
D[v] = e.weight
heappush(heap, (e.weight, v))
return total - spanning
示例13: plot_loss
def plot_loss():
path = utils.get_path(neural=True, in_or_out=utils.OUT, data_fold=utils.TRAINING)
path_slide = path+'slide/'
path_viola = path+'viola/'
for path in [path_slide, path_viola]:
for file in os.listdir(path):
if file.endswith('_history'):
training_loss = list()
validation_loss = list()
with open(path+file, 'rb') as csv_file:
csv_reader = csv.reader(csv_file, delimiter='\t')
for i, row in enumerate(csv_reader):
if i==0:
continue
training_loss.append(float(row[1]))
validation_loss.append(float(row[2]))
plt.plot(training_loss, linewidth=3, label='train loss')
plt.plot(validation_loss, linewidth=3, label='valid loss')
#plt.title('History of {0}'.format(file[:-(len('_history'))]))
plt.legend(loc='best')
plt.grid()
plt.xlabel("epoch")
plt.ylabel("loss")
plot_name = path+file+'.jpg'
plt.savefig(plot_name)
plt.close()
示例14: __init__
def __init__(self, config):
self._cwd = os.getcwd()
self._root = get_path()
self._config = config
self._verify_ssl = True
if 'urls' not in self._config:
raise MissingKeyError('Could not find url settings in either global or local configuration file.')
if 'upload' not in self._config['urls']:
raise MissingKeyError('Could not find an upload url in either the global or local configuration file.')
else:
self._upload_url = self._config['upload_url']
if 'login_url' not in self._config['urls']:
self._login_url = self._upload_url
else:
self._login_url = self._config['login_url']
if 'username' not in self._config['urls']:
self._username = raw_input('Please provide the username for your upload server (or leave blank if none is required): ')
else:
self._username = self._config['urls']['username'].encode()
if 'password' not in self._config['urls']:
self._password = getpass.getpass('Please provide the password for your upload server (or leave blank if none is required): ')
else:
self._password = self._config['urls']['password'].encode()
self._zip_name = self._config['name'] + '_v' + self._config['version'] + '.zip'
self._zip_path = os.path.join(self._cwd, 'build', self._zip_name)
示例15: __init__
def __init__(self, handle):
''' Initialize the toolbars and the work surface '''
super(BBoardActivity, self).__init__(handle)
self.datapath = get_path(activity, 'instance')
self._hw = get_hardware()
self._playback_buttons = {}
self._audio_recordings = {}
self.colors = profile.get_color().to_string().split(',')
self._setup_toolbars()
self._setup_canvas()
self.slides = []
self._setup_workspace()
self._buddies = [profile.get_nick_name()]
self._setup_presence_service()
self._thumbs = []
self._thumbnail_mode = False
self._recording = False
self._grecord = None
self._alert = None
self._dirty = False