本文整理汇总了Python中utility.webqtlUtil.genRandStr函数的典型用法代码示例。如果您正苦于以下问题:Python genRandStr函数的具体用法?Python genRandStr怎么用?Python genRandStr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了genRandStr函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotNormalProbability
def plotNormalProbability(vals=None, RISet='', title=None, showstrains=0, specialStrains=[None], size=(750,500)):
dataXZ = vals[:]
dataXZ.sort(webqtlUtil.cmpOrder)
dataLabel = []
dataX = map(lambda X: X[1], dataXZ)
showLabel = showstrains
if len(dataXZ) > 50:
showLabel = 0
for item in dataXZ:
strainName = webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=item[0])
dataLabel.append(strainName)
dataY=Plot.U(len(dataX))
dataZ=map(Plot.inverseCumul,dataY)
c = pid.PILCanvas(size=(750,500))
Plot.plotXY(c, dataZ, dataX, dataLabel = dataLabel, XLabel='Expected Z score', connectdot=0, YLabel='Trait value', title=title, specialCases=specialStrains, showLabel = showLabel)
filename= webqtlUtil.genRandStr("nP_")
c.save(webqtlConfig.IMGDIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
return img
示例2: addToTable
def addToTable(self, traitNames, strainNames,strainIds, traitValues, SE, NStrain, fd):
self.cursor.execute('delete Temp, TempData from Temp, TempData where Temp.DataId = TempData.Id and UNIX_TIMESTAMP()-UNIX_TIMESTAMP(CreateTime)>%d;' % webqtlConfig.MAXLIFE)
i = 0
for trait in traitNames:
ct0 = time.localtime(time.time())
ct = time.strftime("%B/%d %H:%M:%S",ct0)
if trait == '':
trait = "Unnamed Trait"
user_ip = fd.remote_ip
newDescription = '%s entered at %s from IP %s' % (trait,ct,user_ip)
newProbeSetID = webqtlUtil.genRandStr('Usr_TMP_')
self.cursor.execute('SelecT max(id) from TempData')
try:
DataId = self.cursor.fetchall()[0][0] + 1
except:
DataId = 1
self.cursor.execute('Select Id from InbredSet where Name = "%s"' % fd.RISet)
InbredSetId = self.cursor.fetchall()[0][0]
self.cursor.execute('insert into Temp(Name,description, createtime,DataId,InbredSetId,IP) values(%s,%s,Now(),%s,%s,%s)' ,(newProbeSetID, newDescription, DataId,InbredSetId,user_ip))
for k in range(len(traitValues[i])):
if traitValues[i][k] != None:
self.cursor.execute('insert into TempData(Id, StrainId, value, SE, NStrain) values(%s, %s, %s, %s, %s)' , (DataId, strainIds[k], traitValues[i][k],SE[i][k],NStrain[i][k]))
self.searchResult.append('Temp::%s' % newProbeSetID)
i += 1
示例3: plotBoxPlot
def plotBoxPlot(vals):
valsOnly = []
dataXZ = vals[:]
for i in range(len(dataXZ)):
valsOnly.append(dataXZ[i][1])
plotHeight = 320
plotWidth = 220
xLeftOffset = 60
xRightOffset = 40
yTopOffset = 40
yBottomOffset = 60
canvasHeight = plotHeight + yTopOffset + yBottomOffset
canvasWidth = plotWidth + xLeftOffset + xRightOffset
canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight))
XXX = [('', valsOnly[:])]
Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait")
filename= webqtlUtil.genRandStr("Box_")
canvas.save(webqtlConfig.IMGDIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
plotLink = HT.Span("More about ", HT.Href(text="Box Plots", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs13"))
return img, plotLink
示例4: run_plink
def run_plink(this_trait, dataset, species, vals, maf):
plink_output_filename = webqtlUtil.genRandStr("%s_%s_"%(dataset.group.name, this_trait.name))
gen_pheno_txt_file_plink(this_trait, dataset, vals, pheno_filename = plink_output_filename)
plink_command = PLINK_COMMAND + ' --noweb --ped %s/%s.ped --no-fid --no-parents --no-sex --no-pheno --map %s/%s.map --pheno %s%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (
PLINK_PATH, dataset.group.name, PLINK_PATH, dataset.group.name,
TMPDIR, plink_output_filename, this_trait.name, maf, TMPDIR,
plink_output_filename)
logger.debug("plink_command:", plink_command)
os.system(plink_command)
count, p_values = parse_plink_output(plink_output_filename, species)
#for marker in self.dataset.group.markers.markers:
# if marker['name'] not in included_markers:
# logger.debug("marker:", marker)
# self.dataset.group.markers.markers.remove(marker)
# #del self.dataset.group.markers.markers[marker]
logger.debug("p_values:", pf(p_values))
dataset.group.markers.add_pvalues(p_values)
return dataset.group.markers.markers
示例5: screePlot
def screePlot(self, NNN=0, pearsonEigenValue=None):
c1 = pid.PILCanvas(size=(700,500))
Plot.plotXY(canvas=c1, dataX=range(1,NNN+1), dataY=pearsonEigenValue, rank=0, labelColor=pid.blue,plotColor=pid.red, symbolColor=pid.blue, XLabel='Factor Number', connectdot=1,YLabel='Percent of Total Variance %', title='Pearson\'s R Scree Plot')
filename= webqtlUtil.genRandStr("Scree_")
c1.save(webqtlConfig.IMGDIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
return img
示例6: factorLoadingsPlot
def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None):
traitname = map(lambda X:str(X.name), traitList)
c2 = pid.PILCanvas(size=(700,500))
Plot.plotXY(c2, pearsonEigenVectors[0],pearsonEigenVectors[1], 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1)
filename= webqtlUtil.genRandStr("FacL_")
c2.save(webqtlConfig.IMGDIR+filename, format='gif')
img = HT.Image('/image/'+filename+'.gif',border=0)
return img
示例7: __init__
def __init__(self, start_vars, temp_uuid):
#Currently only getting trait data for one trait, but will need
#to change this to accept multiple traits once the collection page is implemented
helper_functions.get_species_dataset_trait(self, start_vars)
tempdata = temp_data.TempData(temp_uuid)
self.samples = [] # Want only ones with values
self.vals = []
for sample in self.dataset.group.samplelist:
value = start_vars['value:' + sample]
self.samples.append(str(sample))
self.vals.append(value)
print("start_vars:", start_vars)
self.set_options(start_vars)
self.json_data = {}
#if self.method == "qtl_reaper":
self.json_data['lodnames'] = ['lod.hk']
self.gen_reaper_results(tempdata)
#else:
# self.gen_pylmm_results(tempdata)
#self.gen_qtl_results(tempdata)
#Get chromosome lengths for drawing the interval map plot
chromosome_mb_lengths = {}
self.json_data['chrnames'] = []
for key in self.species.chromosomes.chromosomes.keys():
self.json_data['chrnames'].append([self.species.chromosomes.chromosomes[key].name, self.species.chromosomes.chromosomes[key].mb_length])
chromosome_mb_lengths[key] = self.species.chromosomes.chromosomes[key].mb_length
#print("self.qtl_results:", self.qtl_results)
print("JSON DATA:", self.json_data)
#os.chdir(webqtlConfig.TMPDIR)
json_filename = webqtlUtil.genRandStr(prefix="intmap_")
json.dumps(self.json_data, webqtlConfig.TMPDIR + json_filename)
self.js_data = dict(
manhattan_plot = self.manhattan_plot,
additive = self.additive,
chromosomes = chromosome_mb_lengths,
qtl_results = self.qtl_results,
json_data = self.json_data
#lrs_lod = self.lrs_lod,
)
示例8: run_rqtl_plink
def run_rqtl_plink(self):
os.chdir("/home/zas1024/plink")
output_filename = webqtlUtil.genRandStr("%s_%s_"%(self.dataset.group.name, self.this_trait.name))
self.gen_pheno_txt_file_plink(pheno_filename = output_filename)
rqtl_command = './plink --noweb --ped %s.ped --no-fid --no-parents --no-sex --no-pheno --map %s.map --pheno %s/%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (self.dataset.group.name, self.dataset.group.name, webqtlConfig.TMPDIR, plink_output_filename, self.this_trait.name, self.maf, webqtlConfig.TMPDIR, plink_output_filename)
os.system(rqtl_command)
count, p_values = self.parse_rqtl_output(plink_output_filename)
示例9: run_rqtl_plink
def run_rqtl_plink(self):
# os.chdir("") never do this inside a webserver!!
output_filename = webqtlUtil.genRandStr("%s_%s_"%(self.dataset.group.name, self.this_trait.name))
plink_mapping.gen_pheno_txt_file_plink(self.this_trait, self.dataset, self.vals, pheno_filename = output_filename)
rqtl_command = './plink --noweb --ped %s.ped --no-fid --no-parents --no-sex --no-pheno --map %s.map --pheno %s/%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (self.dataset.group.name, self.dataset.group.name, TMPDIR, plink_output_filename, self.this_trait.name, self.maf, TMPDIR, plink_output_filename)
os.system(rqtl_command)
count, p_values = self.parse_rqtl_output(plink_output_filename)
示例10: plotBarGraph
def plotBarGraph(identification='', RISet='', vals=None, type="name"):
this_identification = "unnamed trait"
if identification:
this_identification = identification
if type=="rank":
dataXZ = vals[:]
dataXZ.sort(webqtlUtil.cmpOrder)
title='%s' % this_identification
else:
dataXZ = vals[:]
title='%s' % this_identification
tvals = []
tnames = []
tvars = []
for i in range(len(dataXZ)):
tvals.append(dataXZ[i][1])
tnames.append(webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=dataXZ[i][0]))
tvars.append(dataXZ[i][2])
nnStrain = len(tnames)
sLabel = 1
###determine bar width and space width
if nnStrain < 20:
sw = 4
elif nnStrain < 40:
sw = 3
else:
sw = 2
### 700 is the default plot width minus Xoffsets for 40 strains
defaultWidth = 650
if nnStrain > 40:
defaultWidth += (nnStrain-40)*10
defaultOffset = 100
bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain)
if bw < 10:
bw = 10
plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset
plotHeight = 500
#print [plotWidth, plotHeight, bw, sw, nnStrain]
c = pid.PILCanvas(size=(plotWidth,plotHeight))
Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title=title, sLabel = sLabel, barSpace = sw)
filename= webqtlUtil.genRandStr("Bar_")
c.save(webqtlConfig.IMGDIR+filename, format='gif')
img=HT.Image('/image/'+filename+'.gif',border=0)
return img
示例11: __init__
def __init__(self, start_vars, temp_uuid):
# Currently only getting trait data for one trait, but will need
# to change this to accept multiple traits once the collection page is implemented
helper_functions.get_species_dataset_trait(self, start_vars)
tempdata = temp_data.TempData(temp_uuid)
self.samples = [] # Want only ones with values
self.vals = []
for sample in self.dataset.group.samplelist:
value = start_vars["value:" + sample]
self.samples.append(str(sample))
self.vals.append(value)
print("start_vars:", start_vars)
self.set_options(start_vars)
self.score_type = "LRS"
self.cutoff = 3
self.json_data = {}
self.json_data["lodnames"] = ["lod.hk"]
self.gen_reaper_results(tempdata)
# Get chromosome lengths for drawing the interval map plot
chromosome_mb_lengths = {}
self.json_data["chrnames"] = []
for key in self.species.chromosomes.chromosomes.keys():
self.json_data["chrnames"].append(
[self.species.chromosomes.chromosomes[key].name, self.species.chromosomes.chromosomes[key].mb_length]
)
chromosome_mb_lengths[key] = self.species.chromosomes.chromosomes[key].mb_length
print("JSON DATA:", self.json_data)
json_filename = webqtlUtil.genRandStr(prefix="intmap_")
json.dumps(self.json_data, webqtlConfig.TMPDIR + json_filename)
self.js_data = dict(
result_score_type=self.score_type,
manhattan_plot=self.manhattan_plot,
chromosomes=chromosome_mb_lengths,
qtl_results=self.qtl_results,
json_data=self.json_data,
)
示例12: run_plink
def run_plink(this_trait, dataset, species, vals, maf):
plink_output_filename = webqtlUtil.genRandStr("%s_%s_"%(dataset.group.name, this_trait.name))
gen_pheno_txt_file(dataset, vals)
plink_command = PLINK_COMMAND + ' --noweb --bfile %s/%s --no-pheno --no-fid --no-parents --no-sex --maf %s --out %s%s --assoc ' % (
flat_files('mapping'), dataset.group.name, maf, TMPDIR, plink_output_filename)
logger.debug("plink_command:", plink_command)
os.system(plink_command)
count, p_values = parse_plink_output(plink_output_filename, species)
logger.debug("p_values:", p_values)
dataset.group.markers.add_pvalues(p_values)
return dataset.group.markers.markers
示例13: factorLoadingsPlot
def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None):
traitname = map(lambda X:str(X.name), traitList)
c2 = pid.PILCanvas(size=(700,500))
if type(pearsonEigenVectors[0][0]).__name__ == 'complex':
pearsonEigenVectors_0 = self.removeimag_array(values=pearsonEigenVectors[0])
else:
pearsonEigenVectors_0 = pearsonEigenVectors[0]
if type(pearsonEigenVectors[1][0]).__name__ == 'complex':
pearsonEigenVectors_1 = self.removeimag_array(values=pearsonEigenVectors[1])
else:
pearsonEigenVectors_1 = pearsonEigenVectors[1]
Plot.plotXY(c2, pearsonEigenVectors_0,pearsonEigenVectors_1, 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1)
filename= webqtlUtil.genRandStr("FacL_")
c2.save(webqtlConfig.IMGDIR+filename, format='gif')
img = HT.Image('/image/'+filename+'.gif',border=0)
return img
示例14: run_plink
def run_plink(self):
plink_output_filename = webqtlUtil.genRandStr("%s_%s_" % (self.dataset.group.name, self.this_trait.name))
self.gen_pheno_txt_file_plink(pheno_filename=plink_output_filename)
plink_command = (
PLINK_COMMAND
+ " --noweb --ped %s/%s.ped --no-fid --no-parents --no-sex --no-pheno --map %s/%s.map --pheno %s%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc "
% (
PLINK_PATH,
self.dataset.group.name,
PLINK_PATH,
self.dataset.group.name,
webqtlConfig.TMPDIR,
plink_output_filename,
self.this_trait.name,
self.maf,
webqtlConfig.TMPDIR,
plink_output_filename,
)
)
print("plink_command:", plink_command)
os.system(plink_command)
count, p_values = self.parse_plink_output(plink_output_filename)
# for marker in self.dataset.group.markers.markers:
# if marker['name'] not in included_markers:
# print("marker:", marker)
# self.dataset.group.markers.markers.remove(marker)
# #del self.dataset.group.markers.markers[marker]
print("p_values:", pf(p_values))
self.dataset.group.markers.add_pvalues(p_values)
return self.dataset.group.markers.markers
示例15: run_plink
def run_plink(self):
os.chdir("/home/zas1024/plink")
plink_output_filename = webqtlUtil.genRandStr("%s_%s_"%(self.dataset.group.name, self.this_trait.name))
self.gen_pheno_txt_file_plink(pheno_filename = plink_output_filename)
plink_command = './plink --noweb --ped %s.ped --no-fid --no-parents --no-sex --no-pheno --map %s.map --pheno %s/%s.txt --pheno-name %s --maf %s --missing-phenotype -9999 --out %s%s --assoc ' % (self.dataset.group.name, self.dataset.group.name, webqtlConfig.TMPDIR, plink_output_filename, self.this_trait.name, self.maf, webqtlConfig.TMPDIR, plink_output_filename)
os.system(plink_command)
count, p_values = self.parse_plink_output(plink_output_filename)
#gemma_command = './gemma -bfile %s -k output_%s.cXX.txt -lmm 1 -o %s_output' % (
# self.dataset.group.name,
# self.dataset.group.name,
# self.dataset.group.name)
#print("gemma_command:" + gemma_command)
#
#os.system(gemma_command)
#
#included_markers, p_values = self.parse_gemma_output()
#
#self.dataset.group.get_specified_markers(markers = included_markers)
#for marker in self.dataset.group.markers.markers:
# if marker['name'] not in included_markers:
# print("marker:", marker)
# self.dataset.group.markers.markers.remove(marker)
# #del self.dataset.group.markers.markers[marker]
print("p_values:", pf(p_values))
self.dataset.group.markers.add_pvalues(p_values)
return self.dataset.group.markers.markers