本文整理汇总了Python中util.normalize函数的典型用法代码示例。如果您正苦于以下问题:Python normalize函数的具体用法?Python normalize怎么用?Python normalize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normalize函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: drawHouseNames
def drawHouseNames(self, chrt, rHouseNames):
(cx, cy) = self.center.Get()
clr = self.options.clrhousenumbers
if self.bw:
clr = (0, 0, 0)
pen = wx.Pen(clr, 1)
self.bdc.SetPen(pen)
asc = self.chartRadix.houses.ascmc[houses.Houses.ASC]
if self.options.ayanamsha != 0 and self.options.hsys == "W":
asc = util.normalize(self.chartRadix.houses.ascmc[houses.Houses.ASC] - self.chartRadix.ayanamsha)
for i in range(1, houses.Houses.HOUSE_NUM + 1):
width = 0.0
if i != houses.Houses.HOUSE_NUM:
width = chrt.houses.cusps[i + 1] - chrt.houses.cusps[i]
else:
width = chrt.houses.cusps[1] - chrt.houses.cusps[houses.Houses.HOUSE_NUM]
width = util.normalize(width)
halfwidth = math.radians(width / 2.0)
dif = math.radians(util.normalize(asc - chrt.houses.cusps[i]))
x = cx + math.cos(math.pi + dif - halfwidth) * rHouseNames
y = cy + math.sin(math.pi + dif - halfwidth) * rHouseNames
if i == 1 or i == 2:
xoffs = 0
yoffs = self.symbolSize / 4
if i == 2:
xoffs = self.symbolSize / 8
else:
xoffs = self.symbolSize / 4
yoffs = self.symbolSize / 4
self.draw.text((x - xoffs, y - yoffs), common.common.Housenames[i - 1], fill=clr, font=self.fntText)
示例2: test
def test(self, categories):
for i in range(Constants.NUM_SUBJECTS):
trainSubjects = [1, 2, 3, 4]
testSubjects = [i + 1]
trainSubjects.remove(i + 1)
trainVoxelArrayMap = util.getVoxelArray(subjectNumbers = trainSubjects)
testVoxelArrayMap = util.getVoxelArray(subjectNumbers = testSubjects)
util.normalize(trainVoxelArrayMap)
util.normalize(testVoxelArrayMap)
util.filterData(trainVoxelArrayMap, categories=categories)
util.filterData(testVoxelArrayMap, categories=categories)
Xtrain = numpy.array([trainVoxelArrayMap[key] for key in trainVoxelArrayMap])
Ytrain = numpy.array([key[1] for key in trainVoxelArrayMap])
Xtest = numpy.array([testVoxelArrayMap[key] for key in testVoxelArrayMap])
Yanswer = numpy.array([key[1] for key in testVoxelArrayMap])
Yprediction = OneVsRestClassifier(LinearSVC()).fit(Xtrain, Ytrain).predict(Xtest)
# Yprediction = OneVsOneClassifier(LinearSVC()).fit(Xtrain, Ytrain).predict(Xtest)
correct = 0
for index in range(len(Yanswer)):
if Yanswer[index] == Yprediction[index]:
correct += 1
# correct = [1 if Yanswer[index] == Yprediction[index] else 0 for index in range(len(Yanswer))]
print categories, "Correct Predictions: ", correct, "/", len(Yanswer)
return float(correct) * 100 / len(Yanswer)
示例3: test_string_derived_fields
def test_string_derived_fields():
f = fields.EmailField()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'string',
'format': 'email',
}
f = fields.IPv4Field()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'string',
'format': 'ipv4',
}
f = fields.DateTimeField()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'string',
'format': 'date-time',
}
f = fields.UriField()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'string',
'format': 'uri',
}
示例4: find_max_eigenpair
def find_max_eigenpair(T, outer_iterations = 10, inner_iterations = 100):
"""
Run tensor power method (Algorithm 1 of Anandkumar/Ge/Hsu/Kakade/Telgarsky, 2012).
"""
D = T.shape[0]
eps = 1e-10
best = (-np.inf, np.zeros(D))
# Outer iterations
for tau in xrange(outer_iterations):
# (1) Draw a random initialization θ_t
theta = normalize( randn( D ) )
# Inner iterations
for t in xrange(inner_iterations):
# 2) Update θ ← T(I, θ, θ)/||T(I, θ, θ)||
theta_ = normalize( T.ttv( (theta, theta), modes = (1,2) ) )
if norm(theta - theta_) < eps:
break
# (3) Choose θ_t with max eigenvalue λ = T(θ, θ, θ)
lbda = float( T.ttv( (theta, theta, theta), modes = (0,1,2) ) )
epair = lbda, theta
if epair[0] > best[0]:
best = epair
_, theta = best
for t in xrange(inner_iterations):
# 2) Update θ ← T(I, θ, θ)/||T(I, θ, θ)||
theta = normalize( T.ttv( (theta, theta), modes = (1,2) ) )
# (4) Update θ
lbda = float(T.ttv( (theta, theta, theta), modes = (0,1,2) ))
# (5) Return λ, θ
return lbda, theta
示例5: test_recursive_document_field
def test_recursive_document_field():
class Tree(Document):
node = fields.OneOfField([
fields.ArrayField(fields.DocumentField('self')),
fields.StringField(),
])
expected_schema = {
'$schema': 'http://json-schema.org/draft-04/schema#',
'definitions': {
'test_fields.Tree': {
'type': 'object',
'additionalProperties': False,
'properties': {
'node': {
'oneOf': [
{
'type': 'array',
'items': {'$ref': '#/definitions/test_fields.Tree'},
},
{
'type': 'string',
},
],
},
},
},
},
'$ref': '#/definitions/test_fields.Tree',
}
assert normalize(Tree.get_schema()) == normalize(expected_schema)
示例6: test_string_field
def test_string_field():
f = fields.StringField()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {'type': 'string'}
f = fields.StringField(min_length=1, max_length=10, pattern='^test$',
enum=('a', 'b', 'c'), title='Pururum')
expected_items = [
('type', 'string'),
('title', 'Pururum'),
('enum', ['a', 'b', 'c']),
('pattern', '^test$'),
('minLength', 1),
('maxLength', 10),
]
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == dict(expected_items)
definitions, ordered_schema = f.get_definitions_and_schema(ordered=True)
assert isinstance(ordered_schema, OrderedDict)
assert normalize(ordered_schema) == OrderedDict(expected_items)
with pytest.raises(ValueError) as e:
fields.StringField(pattern='(')
assert str(e.value) == 'Invalid regular expression: unbalanced parenthesis'
示例7: test_number_and_int_fields
def test_number_and_int_fields():
f = fields.NumberField(multiple_of=10)
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'number',
'multipleOf': 10,
}
f = fields.NumberField(minimum=0, maximum=10,
exclusive_minimum=True, exclusive_maximum=True)
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'number',
'exclusiveMinimum': True,
'exclusiveMaximum': True,
'minimum': 0,
'maximum': 10,
}
f = fields.NumberField(enum=(1, 2, 3))
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'number',
'enum': [1, 2, 3],
}
f = fields.IntField()
definitions, schema = f.get_definitions_and_schema()
assert normalize(schema) == {
'type': 'integer',
}
示例8: test_document_field
def test_document_field():
document_cls_mock = mock.Mock()
expected_schema = mock.Mock()
attrs = {
'get_definitions_and_schema.return_value': ({}, expected_schema),
'get_definition_id.return_value': 'document.Document',
'is_recursive.return_value': False,
}
document_cls_mock.configure_mock(**attrs)
f = fields.DocumentField(document_cls_mock)
definitions, schema = f.get_definitions_and_schema()
assert schema == expected_schema
assert not definitions
definitions, schema = f.get_definitions_and_schema(ref_documents=set([document_cls_mock]))
assert normalize(schema) == {'$ref': '#/definitions/document.Document'}
f = fields.DocumentField(document_cls_mock, as_ref=True)
definitions, schema = f.get_definitions_and_schema()
assert definitions == {'document.Document': expected_schema}
assert normalize(schema) == {'$ref': '#/definitions/document.Document'}
attrs = {
'get_definitions_and_schema.return_value': ({}, expected_schema),
'get_definition_id.return_value': 'document.Document',
'is_recursive.return_value': True,
}
document_cls_mock.reset_mock()
document_cls_mock.configure_mock(**attrs)
f = fields.DocumentField(document_cls_mock, as_ref=True)
definitions, schema = f.get_definitions_and_schema()
assert schema == expected_schema
assert not definitions
示例9: correlationNearestNeighbor
def correlationNearestNeighbor():
voxelArrayMap = util.getVoxelArray(False, False,True,False, [4])
util.normalize(voxelArrayMap)
correct = [{ }]*3
totalCountCorrect = [0] *3
totalCountInCorrect = [0] *3
incorrect = [{ }]*3
voxelCopy = voxelArrayMap.keys()
totalCorrect =0
totalIncorrect =0
count = 0
for key in voxelCopy:
count +=1
testExample = voxelArrayMap[key]
voxelArrayMap.pop(key, None)
averageCategoryCorrelations = matrixify(calculateAverageCorrelations(voxelArrayMap))
exampleCorrelations = calculateSingleExampleCorrelations(testExample, voxelArrayMap)
classifiedCategory = classifyByClosestCorrelation(exampleCorrelations,averageCategoryCorrelations)
if classifiedCategory[0] == key[1]:
totalCorrect +=1
else:
totalIncorrect +=1
voxelArrayMap[key] = testExample
print "Correct", totalCorrect, "Incorrect", totalIncorrect, "Percentage Correct ", totalCorrect/float((totalCorrect +totalIncorrect))
示例10: toHCs
def toHCs(self, mundane, idprom, raprom, dsa, nsa, aspect, asp=0.0):
#day-house, night-house length
dh = dsa/3.0
nh = nsa/3.0
#ra rise, ra set
rar = self.ramc+dsa
ras = self.raic+nsa
rar = util.normalize(rar)
ras = util.normalize(ras)
#ra housecusps
rahcps = ((primdirs.PrimDir.HC2, rar+nh), (primdirs.PrimDir.HC3, rar+2*nh), (primdirs.PrimDir.HC5, self.raic+nh), (primdirs.PrimDir.HC6, self.raic+2*nh), (primdirs.PrimDir.HC8, ras+dh), (primdirs.PrimDir.HC9, ras+2*dh), (primdirs.PrimDir.HC11, self.ramc+dh), (primdirs.PrimDir.HC12, self.ramc+2*dh))
for h in range(len(rahcps)):
rahcp = rahcps[h][1]
rahcp = util.normalize(rahcp)
arc = raprom-rahcp
ok = True
if idprom == astrology.SE_MOON and self.options.pdsecmotion:
for itera in range(self.options.pdsecmotioniter+1):
ok, arc = self.calcHArcWithSM(mundane, idprom, h, arc, aspect, asp)
if not ok:
break
if ok:
self.create(mundane, idprom, primdirs.PrimDir.NONE, rahcps[h][0], aspect, chart.Chart.CONJUNCTIO, arc)
示例11: isShowAsp
def isShowAsp(self, typ, lon1, lon2, p = -1):
res = False
if typ != chart.Chart.NONE and (not self.options.intables or self.options.aspect[typ]):
val = True
#check traditional aspects
if self.options.intables:
if self.options.traditionalaspects:
if not(typ == chart.Chart.CONJUNCTIO or typ == chart.Chart.SEXTIL or typ == chart.Chart.QUADRAT or typ == chart.Chart.TRIGON or typ == chart.Chart.OPPOSITIO):
val = False
else:
lona1 = lon1
lona2 = lon2
if self.options.ayanamsha != 0:
lona1 -= self.chart.ayanamsha
lona1 = util.normalize(lona1)
lona2 -= self.chart.ayanamsha
lona2 = util.normalize(lona2)
sign1 = int(lona1/chart.Chart.SIGN_DEG)
sign2 = int(lona2/chart.Chart.SIGN_DEG)
signdiff = math.fabs(sign1-sign2)
#check pisces-aries transition
if signdiff > chart.Chart.SIGN_NUM/2:
signdiff = chart.Chart.SIGN_NUM-signdiff#!?
if self.arsigndiff[typ] != signdiff:
val = False
if not self.options.aspectstonodes and p == astrology.SE_MEAN_NODE:
val = False
res = val
return res
示例12: init_nmf
def init_nmf(F, T, Z, q_init=None):
if q_init is None:
q = dict()
q['f|z'] = normalize(1+numpy.random.exponential(size=(F, Z)), axis=0)
q['zt'] = normalize(1+numpy.random.exponential(size=(Z, T)))
else:
q = copy.deepcopy(q_init)
return q
示例13: playlistinfo
def playlistinfo(self):
with mpd.connect(self.host, self.port) as client:
info = client.playlistinfo()
info = [item for item in info if item]
for item in info:
normalize(item, {'title' : ('file',), 'artist' : tuple()})
item['duration'] = fmt_time(item.get('time', 0))
return info
示例14: list
def list(self, uri):
with mpd.connect(self.host, self.port) as client:
listing = client.lsinfo(uri)
for d in listing:
if 'directory' in d:
d['dirname'] = d['directory'].split('/')[-1]
if 'file' in d:
normalize(d, {'title' : ('file',)})
return listing
示例15: test_basics
def test_basics():
class User(Document):
id = Var({
'response': IntField(required=True)
})
login = StringField(required=True)
class Task(Document):
class Options(object):
title = 'Task'
description = 'A task.'
definition_id = 'task'
id = IntField(required=Var({'response': True}))
name = StringField(required=True, min_length=5)
type = StringField(required=True, enum=['TYPE_1', 'TYPE_2'])
created_at = DateTimeField(required=True)
author = Var({'response': DocumentField(User)})
assert normalize(Task.get_schema()) == normalize({
'$schema': 'http://json-schema.org/draft-04/schema#',
'additionalProperties': False,
'description': 'A task.',
'properties': {
'created_at': {'format': 'date-time', 'type': 'string'},
'id': {'type': 'integer'},
'name': {'minLength': 5, 'type': 'string'},
'type': {'enum': ['TYPE_1', 'TYPE_2'], 'type': 'string'}
},
'required': ['created_at', 'type', 'name'],
'title': 'Task',
'type': 'object'
})
assert normalize(Task.get_schema(role='response')) == normalize({
'$schema': 'http://json-schema.org/draft-04/schema#',
'title': 'Task',
'description': 'A task.',
'type': 'object',
'additionalProperties': False,
'properties': {
'created_at': {'format': 'date-time', 'type': 'string'},
'id': {'type': 'integer'},
'name': {'minLength': 5, 'type': 'string'},
'type': {'enum': ['TYPE_1', 'TYPE_2'], 'type': 'string'},
'author': {
'additionalProperties': False,
'properties': {
'id': {'type': 'integer'},
'login': {'type': 'string'}
},
'required': ['id', 'login'],
'type': 'object'
},
},
'required': ['created_at', 'type', 'name', 'id'],
})