本文整理汇总了Python中user_portrait.global_utils.ES_CLUSTER_FLOW1.mget方法的典型用法代码示例。如果您正苦于以下问题:Python ES_CLUSTER_FLOW1.mget方法的具体用法?Python ES_CLUSTER_FLOW1.mget怎么用?Python ES_CLUSTER_FLOW1.mget使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类user_portrait.global_utils.ES_CLUSTER_FLOW1
的用法示例。
在下文中一共展示了ES_CLUSTER_FLOW1.mget方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_user_detail
# 需要导入模块: from user_portrait.global_utils import ES_CLUSTER_FLOW1 [as 别名]
# 或者: from user_portrait.global_utils.ES_CLUSTER_FLOW1 import mget [as 别名]
def get_user_detail(date, input_result, status):
results = []
if status=='show_in':
uid_list = input_result
if status=='show_compute':
uid_list = input_result.keys()
if status=='show_in_history':
uid_list = input_result.keys()
if date!='all':
index_name = 'bci_' + ''.join(date.split('-'))
else:
now_ts = time.time()
now_date = ts2datetime(now_ts)
index_name = 'bci_' + ''.join(now_date.split('-'))
index_type = 'bci'
user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
max_evaluate_influ = get_evaluate_max(index_name)
for i in range(0, len(uid_list)):
uid = uid_list[i]
bci_dict = user_bci_result[i]
profile_dict = user_profile_result[i]
try:
bci_source = bci_dict['_source']
except:
bci_source = None
if bci_source:
influence = bci_source['user_index']
influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
influence = influence * 100
else:
influence = ''
try:
profile_source = profile_dict['_source']
except:
profile_source = None
if profile_source:
uname = profile_source['nick_name']
location = profile_source['user_location']
fansnum = profile_source['fansnum']
statusnum = profile_source['statusnum']
else:
uname = ''
location = ''
fansnum = ''
statusnum = ''
if status == 'show_in':
results.append([uid, uname, location, fansnum, statusnum, influence])
if status == 'show_compute':
in_date = json.loads(input_result[uid])[0]
compute_status = json.loads(input_result[uid])[1]
if compute_status == '1':
compute_status = '3'
results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
if status == 'show_in_history':
in_status = input_result[uid]
results.append([uid, uname, location, fansnum, statusnum, influence, in_status])
return results
示例2: get_recommentation
# 需要导入模块: from user_portrait.global_utils import ES_CLUSTER_FLOW1 [as 别名]
# 或者: from user_portrait.global_utils.ES_CLUSTER_FLOW1 import mget [as 别名]
def get_recommentation(submit_user):
if RUN_TYPE:
now_ts = time.time()
else:
now_ts = datetime2ts(RUN_TEST_TIME)
in_portrait_set = set(r.hkeys("compute"))
result = []
for i in range(7):
iter_ts = now_ts - i*DAY
iter_date = ts2datetime(iter_ts)
submit_user_recomment = "recomment_" + submit_user + "_" + str(iter_date)
bci_date = ts2datetime(iter_ts - DAY)
submit_user_recomment = r.hkeys(submit_user_recomment)
bci_index_name = "bci_" + bci_date.replace('-', '')
exist_bool = es_cluster.indices.exists(index=bci_index_name)
if not exist_bool:
continue
if submit_user_recomment:
user_bci_result = es_cluster.mget(index=bci_index_name, doc_type="bci", body={'ids':submit_user_recomment}, _source=True)['docs']
user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':submit_user_recomment}, _source=True)['docs']
max_evaluate_influ = get_evaluate_max(bci_index_name)
for i in range(len(submit_user_recomment)):
uid = submit_user_recomment[i]
bci_dict = user_bci_result[i]
profile_dict = user_profile_result[i]
try:
bci_source = bci_dict['_source']
except:
bci_source = None
if bci_source:
influence = bci_source['user_index']
influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
influence = influence * 100
else:
influence = ''
try:
profile_source = profile_dict['_source']
except:
profile_source = None
if profile_source:
uname = profile_source['nick_name']
location = profile_source['user_location']
fansnum = profile_source['fansnum']
statusnum = profile_source['statusnum']
else:
uname = ''
location = ''
fansnum = ''
statusnum = ''
if uid in in_portrait_set:
in_portrait = "1"
else:
in_portrait = "0"
recomment_day = iter_date
result.append([iter_date, uid, uname, location, fansnum, statusnum, influence, in_portrait])
return result
示例3: search_influence_detail
# 需要导入模块: from user_portrait.global_utils import ES_CLUSTER_FLOW1 [as 别名]
# 或者: from user_portrait.global_utils.ES_CLUSTER_FLOW1 import mget [as 别名]
def search_influence_detail(uid_list, index_name, doctype):
result = es.mget(index=index_name, doc_type=doctype, body={"ids": uid_list}, _source=True)["docs"]
return result[0]['_source']
示例4: get_user_detail
# 需要导入模块: from user_portrait.global_utils import ES_CLUSTER_FLOW1 [as 别名]
# 或者: from user_portrait.global_utils.ES_CLUSTER_FLOW1 import mget [as 别名]
def get_user_detail(date, input_result, status, user_type="influence", auth=""):
bci_date = ts2datetime(datetime2ts(date) - DAY)
results = []
if status=='show_in':
uid_list = input_result
if status=='show_compute':
uid_list = input_result.keys()
if status=='show_in_history':
uid_list = input_result.keys()
if date!='all':
index_name = 'bci_' + ''.join(bci_date.split('-'))
else:
now_ts = time.time()
now_date = ts2datetime(now_ts)
index_name = 'bci_' + ''.join(now_date.split('-'))
index_type = 'bci'
user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
max_evaluate_influ = get_evaluate_max(index_name)
for i in range(0, len(uid_list)):
uid = uid_list[i]
bci_dict = user_bci_result[i]
profile_dict = user_profile_result[i]
try:
bci_source = bci_dict['_source']
except:
bci_source = None
if bci_source:
influence = bci_source['user_index']
influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
influence = influence * 100
else:
influence = ''
try:
profile_source = profile_dict['_source']
except:
profile_source = None
if profile_source:
uname = profile_source['nick_name']
location = profile_source['user_location']
fansnum = profile_source['fansnum']
statusnum = profile_source['statusnum']
else:
uname = ''
location = ''
fansnum = ''
statusnum = ''
if status == 'show_in':
if user_type == "sensitive":
tmp_ts = datetime2ts(date) - DAY
tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
if tmp_data:
sensitive_dict = json.loads(tmp_data)
sensitive_words = sensitive_dict.keys()
else:
sensitive_words = []
results.append([uid, uname, location, fansnum, statusnum, influence, sensitive_words])
else:
results.append([uid, uname, location, fansnum, statusnum, influence])
if auth:
hashname_submit = "submit_recomment_" + date
tmp_data = json.loads(r.hget(hashname_submit, uid))
recommend_list = (tmp_data['operation']).split('&')
admin_list = []
admin_list.append(tmp_data['system'])
admin_list.append(list(set(recommend_list)))
admin_list.append(len(recommend_list))
results[-1].extend(admin_list)
if status == 'show_compute':
in_date = json.loads(input_result[uid])[0]
compute_status = json.loads(input_result[uid])[1]
if compute_status == '1':
compute_status = '3'
results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
if status == 'show_in_history':
in_status = input_result[uid]
if user_type == "sensitive":
tmp_ts = datetime2ts(date) - DAY
tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
if tmp_data:
sensitive_dict = json.loads(tmp_data)
sensitive_words = sensitive_dict.keys()
results.append([uid, uname, location, fansnum, statusnum, influence, in_status, sensitive_words])
else:
results.append([uid, uname, location, fansnum, statusnum, influence, in_status])
return results
示例5: range
# 需要导入模块: from user_portrait.global_utils import ES_CLUSTER_FLOW1 [as 别名]
# 或者: from user_portrait.global_utils.ES_CLUSTER_FLOW1 import mget [as 别名]
sensitive_string = "sensitive_score_" + tmp_ts
query_sensitive_body = {
"query":{
"match_all":{}
},
"size":1,
"sort":{sensitive_string:{"order":"desc"}}
}
try:
top_sensitive_result = es_bci_history.search(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body=query_sensitive_body, _source=False, fields=[sensitive_string])['hits']['hits']
top_sensitive = top_sensitive_result[0]['fields'][sensitive_string][0]
except Exception, reason:
print Exception, reason
top_sensitive = 400
index_type = 'bci'
user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
bci_history_result = es_bci_history.mget(index=bci_history_index_name, doc_type=bci_history_index_type, body={"ids":uid_list}, fields=['user_fansnum', 'weibo_month_sum'])['docs']
sensitive_history_result = es_bci_history.mget(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body={'ids':uid_list}, fields=[sensitive_string], _source=False)['docs']
max_evaluate_influ = get_evaluate_max(index_name)
for i in range(0, len(uid_list)):
uid = uid_list[i]
bci_dict = user_bci_result[i]
profile_dict = user_profile_result[i]
bci_history_dict = bci_history_result[i]
sensitive_history_dict = sensitive_history_result[i]
#print sensitive_history_dict
try:
bci_source = bci_dict['_source']
except:
bci_source = None