本文整理汇总了Python中urbansim.datasets.household_dataset.HouseholdDataset类的典型用法代码示例。如果您正苦于以下问题:Python HouseholdDataset类的具体用法?Python HouseholdDataset怎么用?Python HouseholdDataset使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了HouseholdDataset类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_same_distribution_after_household_subtraction
def test_same_distribution_after_household_subtraction(self):
"""Using the control_totals and no marginal characteristics,
subtract households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000]),
"total_number_of_households": array([20000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household", id_name="year")
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = HouseholdTransitionModel()
model.run(year=2000, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 20000 total households after running the model
results = hh_set.size()
should_be = [20000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = [6000.0/33000.0*20000.0, 2000.0/33000.0*20000.0, 3000.0/33000.0*20000.0, 4000.0/33000.0*20000.0,
2000.0/33000.0*20000.0, 5000.0/33000.0*20000.0, 3000.0/33000.0*20000.0, 8000.0/33000.0*20000.0]
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s,\n but result: %s" % (should_be, results))
示例2: test_controlling_with_three_marginal_characteristics
def test_controlling_with_three_marginal_characteristics(self):
"""Controlling with all three possible marginal characteristics in this example, age_of_head, income, and persons,
this would partition the 8 groups into the same 8 groups, and with a control total specified for each group, we must
ensure that the control totals for each group exactly meet the specifications.
"""
#IMPORTANT: marginal characteristics grouping indices have to start at 0!
annual_household_control_totals_data = {
"year": array(8*[2000]),
#"age_of_head": array(4*[0] + 4*[1]),
"age_of_head_min": array([ 0, 0, 0, 0, 50, 50, 50, 50]),
"age_of_head_max": array([49,49,49,49,100,100,100,100]),
#"income": array(2*[0] + 2*[1] + 2*[0] + 2*[1]),
"income_min": array([ 0, 0,40000,40000, 0, 0,40000,40000]),
"income_max": array([39999,39999, -1, -1,39999,39999, -1, -1]),
#"persons": array([0,1,0,1,0,1,0,1]),
"persons_min": array([0, 3,0, 3,0, 3,0, 3]),
"persons_max": array([2,-1,2,-1,2,-1,2,-1]),
"total_number_of_households": array([4000, 5000, 1000, 3000, 0, 6000, 3000, 8000])
}
##size of columns was not even, removed last element of min and max
#household_characteristics_for_ht_data = {
#"characteristic": array(2*['age_of_head'] + 2*['income'] + 2*['persons']),
#"min": array([0, 50, 0, 40000, 0, 3]),
#"max": array([49, 100, 39999, -1, 2, -1])
#}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
# unplace some households
where10 = where(hh_set.get_attribute("grid_id")<>10)[0]
hh_set.modify_attribute(name="grid_id", data=zeros(where10.size), index=where10)
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
#check that there are indeed 33000 total households after running the model
results = hh_set.size()
should_be = [30000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of households in each group exactly match the control totals specified
results = self.get_count_all_groups(hh_set)
should_be = [4000, 5000, 1000, 3000, 0, 6000, 3000, 8000]
self.assertEqual(ma.allclose(results, should_be),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例3: create_households_for_estimation
def create_households_for_estimation(agent_set, dbcon):
estimation_set = HouseholdDataset(in_storage=StorageFactory().get_storage('mysql_storage', storage_location=dbcon),
in_table_name="households_for_estimation")
agent_set.unload_primary_attributes()
agent_set.load_dataset(attributes='*')
estimation_set.load_dataset(attributes=agent_set.get_primary_attribute_names())
for attr in agent_set.get_attribute_names():
agent_set.attribute_boxes[attr].set_data(concatenate((estimation_set.attribute_boxes[attr].get_data(), agent_set.attribute_boxes[attr].get_data())))
agent_set._update_id_mapping()
agent_set.update_size()
return (agent_set, arange(estimation_set.size()))
示例4: run_ALCM
def run_ALCM(niter):
nhhs = 100
ngcs = 10
ngcs_attr = ngcs/2
ngcs_noattr = ngcs - ngcs_attr
hh_grid_ids = array(nhhs*[-1])
storage = StorageFactory().get_storage('dict_storage')
households_table_name = 'households'
storage.write_table(
table_name = households_table_name,
table_data = {
'household_id': arange(nhhs)+1,
'grid_id': hh_grid_ids
}
)
gridcells_table_name = 'gridcells'
storage.write_table(
table_name = gridcells_table_name,
table_data = {
'grid_id': arange(ngcs)+1,
'cost':array(ngcs_attr*[100]+ngcs_noattr*[1000])
}
)
households = HouseholdDataset(in_storage=storage, in_table_name=households_table_name)
gridcells = GridcellDataset(in_storage=storage, in_table_name=gridcells_table_name)
# create coefficients and specification
coefficients = Coefficients(names=('costcoef', ), values=(-0.001,))
specification = EquationSpecification(variables=('gridcell.cost', ), coefficients=('costcoef', ))
logger.be_quiet()
result = zeros((niter,ngcs))
for iter in range(niter):
hlcm = HouseholdLocationChoiceModelCreator().get_model(location_set=gridcells, compute_capacity_flag=False,
choices = 'opus_core.random_choices_from_index',
sampler=None,
#sample_size_locations = 30
)
hlcm.run(specification, coefficients, agent_set=households, debuglevel=1,
chunk_specification={'nchunks':1})
# get results
gridcells.compute_variables(['urbansim.gridcell.number_of_households'],
resources=Resources({'household':households}))
result_more_attractive = gridcells.get_attribute_by_id('number_of_households', arange(ngcs_attr)+1)
result_less_attractive = gridcells.get_attribute_by_id('number_of_households', arange(ngcs_attr+1, ngcs+1))
households.set_values_of_one_attribute(attribute='grid_id', values=hh_grid_ids)
gridcells.delete_one_attribute('number_of_households')
result[iter,:] = concatenate((result_more_attractive, result_less_attractive))
#print result #, result_more_attractive.sum(), result_less_attractive.sum()
return result
示例5: test_controlling_with_one_marginal_characteristic
def test_controlling_with_one_marginal_characteristic(self):
"""Using the age_of_head as a marginal characteristic, which would partition the 8 groups into two larger groups
(those with age_of_head < 40 and >= 40), ensure that the control totals are met and that the distribution within
each large group is the same before and after running the model
"""
#IMPORTANT: marginal characteristics grouping indices have to start at 0!
#i.e. below, there is one marg. char. "age_of_head". here we indicate that the first "large group" (groups 1-4),
#consisting of those groups with age_of_head < 40 should total 25000 households after running this model for one year,
#and the second large group, those groups with age_of_head > 40, should total 15000 households
annual_household_control_totals_data = {
"year": array([2000, 2000]),
"age_of_head": array([0,1]),
"total_number_of_households": array([25000, 15000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=['year' ,'age_of_head'])
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel()
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 40000 total households after running the model
results = hh_set.size()
should_be = [40000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the total number of households within first four groups increased by 10000
#and that the total number of households within last four groups decreased by 3000
results = self.get_count_all_groups(hh_set)
should_be = [25000, 15000]
self.assertEqual(ma.allclose([sum(results[0:4]), sum(results[4:8])], should_be, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households within groups 1-4 and 5-8 are the same before and after
#running the model, respectively
should_be = [6000.0/15000.0*25000.0, 2000.0/15000.0*25000.0, 3000.0/15000.0*25000.0, 4000.0/15000.0*25000.0,
2000.0/18000.0*15000.0, 5000.0/18000.0*15000.0, 3000.0/18000.0*15000.0, 8000.0/18000.0*15000.0]
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例6: test_unplaced_agents_decrease_available_space
def test_unplaced_agents_decrease_available_space(self):
"""Using the household location choice model, create a set of available spaces and
2000 unplaced agents (along with 5000 placed agents). Run the model, and check that
the unplaced agents were placed, and the number of available spaces has decreased"""
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='households',
table_data = {
'grid_id': array(2000*[0] + 5000*[1]),
'household_id': arange(7000)+1
}
)
storage.write_table(table_name='gridcells',
table_data= {
'residential_units':array(50*[10000]),
'grid_id': arange(50)+1
}
)
households = HouseholdDataset(in_storage=storage, in_table_name='households')
gridcells = GridcellDataset(in_storage=storage, in_table_name='gridcells')
coefficients = Coefficients(names=("dummy",), values=(0.1,))
specification = EquationSpecification(variables=("gridcell.residential_units",), coefficients=("dummy",))
"""need to specify to the household location choice model exactly which households are moving,
because by default it assumes all current households want to move, but in this test,
the 5000 households already in gridcell #1 shouldn't move.
here, we specify that only the unplaced households should be moved."""
agents_index = where(households.get_attribute("grid_id") == 0)[0]
hlcm = HouseholdLocationChoiceModelCreator().get_model(location_set=gridcells,
choices = "opus_core.random_choices_from_index", sample_size_locations = 30)
hlcm.run(specification, coefficients, agent_set=households, agents_index=agents_index, debuglevel=1)
gridcells.compute_variables(["urbansim.gridcell.vacant_residential_units"],
resources=Resources({"household":households}))
vacancies = gridcells.get_attribute("vacant_residential_units")
"""since there were 5000 households already in gridcell #1, and gridcell #1 has
10000 residential units, there should be no more than 5000 vacant residential units
in gridcell #1 after running this model"""
self.assertEqual(vacancies[0] <= 5000,
True, "Error: %d" % (vacancies[0],))
"""there should be exactly 430000 vacant residential units after the model run,
because there were originally 50 gridcells with 10000 residential units each,
and a total of 7000 units are occupied after the run"""
self.assertEqual(sum(vacancies) == 50 * 10000 - 7000,
True, "Error: %d" % (sum(vacancies)))
示例7: test_same_distribution_after_household_subtraction
def test_same_distribution_after_household_subtraction(self):
"""Using the control_totals and no marginal characteristics,
subtract households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000, 2000]),
"total_number_of_households": array([8000, 12000]),
"faz_id": array([1,2])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name = 'hh_set', table_data = self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name = 'hct_set', table_data = annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household")
storage.write_table(table_name = 'hc_set', table_data = self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
# storage.write_table(table_name='prs_set', table_data=self.person_data)
# prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = SubareaHouseholdTransitionModel(subarea_id_name="faz_id")
# model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2000, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 8000 (area 1) and 12000 (area 2) total households after running the model
areas = hh_set.get_attribute("faz_id")
results = array([0,0])
for iarea in [0,1]:
results[iarea] = where(areas == [1,2][iarea])[0].size
should_be = [8000, 12000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = array([# area 1
3000.0/16500.0*8000.0, 1000.0/16500.0*8000.0, 1500.0/16500.0*8000.0, 2000.0/16500.0*8000.0,
1000.0/16500.0*8000.0, 2500.0/16500.0*8000.0, 1500.0/16500.0*8000.0, 4000.0/16500.0*8000.0,
# area 2
3000.0/16500.0*12000.0, 1000.0/16500.0*12000.0, 1500.0/16500.0*12000.0, 2000.0/16500.0*12000.0,
1000.0/16500.0*12000.0, 2500.0/16500.0*12000.0, 1500.0/16500.0*12000.0, 4000.0/16500.0*12000.0])
self.assertEqual(ma.allclose(results, should_be, rtol=0.1),
True, "Error, should_be: %s,\n but result: %s" % (should_be, results))
示例8: test_same_distribution_after_household_addition
def test_same_distribution_after_household_addition(self):
"""Using the control_totals and no marginal characteristics,
add households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000, 2000]),
"total_number_of_households": array([20000, 30000]),
"large_area_id": array([1,2])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name = 'hh_set', table_data = self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name = 'hct_set', table_data = annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household")
storage.write_table(table_name = 'hc_set', table_data = self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = RegionalHouseholdTransitionModel()
model.run(year=2000, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are 20000 (area 1) and 30000 (area 2) total households after running the model
areas = hh_set.get_attribute("large_area_id")
results = array([0,0])
for iarea in [0,1]:
results[iarea] = where(areas == [1,2][iarea])[0].size
should_be = [20000, 30000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of unplaced households is exactly the number of new households created
results = where(hh_set.get_attribute("grid_id")<=0)[0].size
should_be = [17000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group and each area is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = array([
# area 1
3000.0/16500.0*20000.0, 1000.0/16500.0*20000.0, 1500.0/16500.0*20000.0, 2000.0/16500.0*20000.0,
1000.0/16500.0*20000.0, 2500.0/16500.0*20000.0, 1500.0/16500.0*20000.0, 4000.0/16500.0*20000.0,
# area 2
3000.0/16500.0*30000.0, 1000.0/16500.0*30000.0, 1500.0/16500.0*30000.0, 2000.0/16500.0*30000.0,
1000.0/16500.0*30000.0, 2500.0/16500.0*30000.0, 1500.0/16500.0*30000.0, 4000.0/16500.0*30000.0])
self.assertEqual(ma.allclose(results, should_be, rtol=0.1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# check the types of the attributes
self.assertEqual(hh_set.get_attribute("age_of_head").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("age_of_head").dtype))
self.assertEqual(hh_set.get_attribute("income").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("income").dtype))
self.assertEqual(hh_set.get_attribute("persons").dtype, int8,
"Error in data type of the new household set. Should be: int8, is: %s" % str(hh_set.get_attribute("persons").dtype))
示例9: test_same_distribution_after_household_addition
def test_same_distribution_after_household_addition(self):
"""Using the control_totals and no marginal characteristics,
add households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000]),
"total_number_of_households": array([50000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household", id_name="year")
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = HouseholdTransitionModel()
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 50000 total households after running the model
results = hh_set.size()
should_be = [50000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of unplaced households is exactly the number of new households created
results = where(hh_set.get_attribute("building_id")<=0)[0].size
should_be = [17000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = array([6000.0/33000.0*50000.0, 2000.0/33000.0*50000.0, 3000.0/33000.0*50000.0, 4000.0/33000.0*50000.0,
2000.0/33000.0*50000.0, 5000.0/33000.0*50000.0, 3000.0/33000.0*50000.0, 8000.0/33000.0*50000.0])
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# check the types of the attributes
self.assertEqual(hh_set.get_attribute("age_of_head").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("age_of_head").dtype))
self.assertEqual(hh_set.get_attribute("income").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("income").dtype))
self.assertEqual(hh_set.get_attribute("persons").dtype, int8,
"Error in data type of the new household set. Should be: int8, is: %s" % str(hh_set.get_attribute("persons").dtype))
示例10: test_controlling_with_one_marginal_characteristic
def test_controlling_with_one_marginal_characteristic(self):
"""Using the age_of_head as a marginal characteristic, which would partition the 8 groups into two larger groups
(those with age_of_head < 40 and >= 40), ensure that the control totals are met and that the distribution within
each large group is the same before and after running the model
"""
#IMPORTANT: marginal characteristics grouping indices have to start at 0!
#i.e. below, there is one marg. char. "age_of_head". here we indicate that the first "large group" (groups 1-4),
#consisting of those groups with age_of_head < 40 should total 25000 households after running this model for one year,
#and the second large group, those groups with age_of_head > 40, should total 15000 households
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2000]),
"age_of_head": array([0, 1, 0, 1]),
"total_number_of_households": array([20000, 10000, 5000, 5000]),
"faz_id": array([1, 1, 2, 2] )
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name = 'hh_set', table_data = self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name = 'hct_set', table_data = annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household')
# storage.write_table(table_name='prs_set', table_data=self.person_data)
# prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
storage.write_table(table_name = 'hc_set', table_data = self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = SubareaHouseholdTransitionModel(subarea_id_name="faz_id")
# model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2000, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 40000 total households after running the model
areas = hh_set.get_attribute("faz_id")
results = array([0,0])
for iarea in [0,1]:
results[iarea] = where(areas == [1,2][iarea])[0].size
should_be = [30000, 10000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of households within the groups correspond to the control totals
results = self.get_count_all_groups(hh_set)
should_be = [20000, 10000, 5000, 5000]
idx1 = arange(0,4)
idx2 = arange(4,8)
idx3 = arange(8,12)
idx4 = arange(12,16)
self.assertEqual(ma.allclose([results[idx1].sum(), results[idx2].sum(), results[idx3].sum(), results[idx4].sum()], should_be, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be,
array([results[idx1].sum(), results[idx2].sum(), results[idx3].sum(), results[idx4].sum()])))
#check that the distribution of households within the groups are the same before and after
#running the model, respectively
should_be = [# area 1
3000.0/7500.0*20000.0, 1000.0/7500.0*20000.0, 1500.0/7500.0*20000.0, 2000.0/7500.0*20000.0,
1000.0/9000.0*10000.0, 2500.0/9000.0*10000.0, 1500.0/9000.0*10000.0, 4000.0/9000.0*10000.0,
# area 2
3000.0/7500.0*5000.0, 1000.0/7500.0*5000.0, 1500.0/7500.0*5000.0, 2000.0/7500.0*5000.0,
1000.0/9000.0*5000.0, 2500.0/9000.0*5000.0, 1500.0/9000.0*5000.0, 4000.0/9000.0*5000.0]
self.assertEqual(ma.allclose(results, should_be, rtol=0.1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例11: test_controlling_age_of_head
def test_controlling_age_of_head(self):
""" Controls for one marginal characteristics, namely age_of_head.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2001, 2001, 2001, 2002, 2002, 2002]),
"age_of_head": array([0,1,2,0,1,2, 0,1,2]),
"total_number_of_households": array([25013, 21513, 18227, # 2000
10055, 15003, 17999, # 2001
15678, 14001, 20432]) # 2002
}
household_characteristics_for_ht_data = {
"characteristic": array(3*['age_of_head']),
"min": array([0, 35, 65]),
"max": array([34, 64, -1])
}
households_data = {
"household_id":arange(15000)+1,
"building_id": array(15000*[1]),
"age_of_head": array(1000*[25] + 1000*[28] + 2000*[32] + 1000*[34] +
2000*[35] + 1000*[40] + 1000*[54]+ 1000*[62] +
1000*[65] + 1000*[68] + 2000*[71] + 1000*[98]),
"persons": array(1000*[2] + 2000*[3] + 1000*[1] + 1000*[6] + 1000*[1] + 1000*[4] +
3000*[1]+ 5000*[5], dtype=int8)
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household',
id_name=['year' ,'age_of_head'])
storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel(debuglevel=3)
# this run should add households in all four categories
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[0:3]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:3]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
model.run(year=2001, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[3:6]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[3:6]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
model.run(year=2002, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[6:9]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[6:9]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例12: test_controlling_income
def test_controlling_income(self):
""" Controls for one marginal characteristics, namely income.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2000, 2001, 2001, 2001, 2001, 2002, 2002, 2002, 2002]),
"income": array([0,1,2,3,0,1,2,3, 0,1,2,3]),
"total_number_of_households": array([25013, 21513, 18227, 18493, # 2000
10055, 15003, 17999, 17654, # 2001
15678, 14001, 20432, 14500]) # 2002
}
household_characteristics_for_ht_data = {
"characteristic": array(4*['income']),
"min": array([0, 40000, 120000, 70000]), # category 120000 has index 3 and category 70000 has index 2
"max": array([39999, 69999, -1, 119999]) # (testing row invariance)
}
hc_sorted_index = array([0,1,3,2])
households_data = {
"household_id":arange(20000)+1,
"building_id": array(19950*[1] + 50*[0]),
"income": array(1000*[1000] + 1000*[10000] + 2000*[20000] + 1000*[35000] + 2000*[45000] +
1000*[50000] + 2000*[67000]+ 2000*[90000] + 1000*[100005] + 2000*[110003] +
1000*[120000] + 1000*[200000] + 2000*[500000] + 1000*[630000]),
"persons": array(3000*[2] + 2000*[3] + 1000*[1] + 1000*[6] + 1000*[1] + 1000*[4] +
3000*[1]+ 8000*[5], dtype=int8)
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=['year' ,'income'])
storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel(debuglevel=3)
# this run should add households in all four categories
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [83246]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:4]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
model.run(year=2001, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[4:8]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[4:8]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
model.run(year=2002, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[8:13]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <= hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[8:13]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例13: run_HTM
def run_HTM(niter):
nhhs = 5000
ngroups = 4
nhhsg = int(nhhs/ngroups)
nhhslg = nhhs-(ngroups-1)*nhhsg
should_nhhs = nhhs-2000
storage = StorageFactory().get_storage('dict_storage')
hc_set_table_name = 'hc_set'
storage.write_table(
table_name = hc_set_table_name,
table_data = {
'characteristic': array(4*['income']+4*['age_of_head']),
'min':array([0,1001,5001, 10001, 0, 31, 41, 61]),
'max':array([1000, 5000, 10000,-1, 30, 40, 60, -1])
},
)
hct_set_table_name = 'hct_set'
storage.write_table(
table_name = hct_set_table_name,
table_data = {
'year':array([2000]),
'total_number_of_households':array([should_nhhs])
},
)
households_table_name = 'households'
storage.write_table(
table_name = households_table_name,
table_data = {
'age_of_head': array(nhhsg/2*[18]+(nhhsg-nhhsg/2)*[35] +
nhhsg/2*[30] + (nhhsg-nhhsg/2)*[40] +
nhhsg/2*[38] + (nhhsg-nhhsg/2)*[65] +
nhhslg/2*[50] + (nhhslg-nhhslg/2)*[80]
),
'income': array(nhhsg*[500] + nhhsg*[2000] +
nhhsg*[7000] + nhhslg*[15000]
),
'household_id':arange(nhhs)+1
},
)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name=hc_set_table_name)
hct_set = ControlTotalDataset(
in_storage = storage,
in_table_name = hct_set_table_name,
what = 'household',
id_name = ['year']
)
logger.be_quiet()
result = zeros((niter,4))
for iter in range(niter):
households = HouseholdDataset(in_storage=storage, in_table_name=households_table_name)
model = HouseholdTransitionModel()
model.run(year=2000, household_set=households, control_totals=hct_set, characteristics=hc_set)
income = households.get_attribute('income')
age = households.get_attribute('age_of_head')
idx1 = where(income <= 1000)[0]
idx2 = where(logical_and(income <= 5000, income > 1000))[0]
idx3 = where(logical_and(income <= 10000, income > 5000))[0]
idx4 = where(income > 10000)[0]
result[iter,:] = array([age[idx1].mean(), age[idx2].mean(), age[idx3].mean(), age[idx4].mean()])
return result
示例14: test_controlling_age_of_head
def test_controlling_age_of_head(self):
""" Controls for one marginal characteristics, namely age_of_head.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2001, 2001, 2001, 2002, 2002, 2002]),
#"age_of_head": array([0,1,2,0,1,2, 0,1,2]),
"age_of_head_min": array([ 0,35,65, 0,35,65, 0,35,65]),
"age_of_head_max": array([34,64,-1, 34,64,-1, 34,64,-1]),
"total_number_of_households": array([25013, 21513, 18227, # 2000
10055, 15003, 17999, # 2001
15678, 14001, 20432]) # 2002
}
#household_characteristics_for_ht_data = {
#"characteristic": array(3*['age_of_head']),
#"min": array([0, 35, 65]),
#"max": array([34, 64, -1])
#}
households_data = {
"household_id":arange(15000)+1,
"grid_id": array(15000*[1]),
"age_of_head": array(1000*[25] + 1000*[28] + 2000*[32] + 1000*[34] +
2000*[35] + 1000*[40] + 1000*[54]+ 1000*[62] +
1000*[65] + 1000*[68] + 2000*[71] + 1000*[98])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household',
id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[0:3]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
cats = 3
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+1]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:3]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
#model.run(year=2001, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2001, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[3:6]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+3],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i+3]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+4]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[3:6]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
#model.run(year=2002, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2002, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[6:9]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0], 1,0).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+6],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i+6]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+7]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[6:9]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例15: test_controlling_income
def test_controlling_income(self):
""" Controls for one marginal characteristics, namely income.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2000, 2001, 2001, 2001, 2001, 2002, 2002, 2002, 2002]),
#"income": array([0,1,2,3,0,1,2,3, 0,1,2,3]),
"income_min": array([ 0,40000, 70000,120000, 0,40000, 70000,120000, 0,40000, 70000,120000]),
"income_max": array([39999,69999,119999, -1, 39999,69999,119999, -1, 39999,69999,119999, -1]),
"total_number_of_households": array([25013, 21513, 18227, 18493, # 2000
10055, 15003, 17999, 17654, # 2001
15678, 14001, 20432, 14500]) # 2002
}
#household_characteristics_for_ht_data = {
#"characteristic": array(4*['income']),
#"min": array([0, 40000, 120000, 70000]), # category 120000 has index 3 and category 70000 has index 2
#"max": array([39999, 69999, -1, 119999]) # (testing row invariance)
#}
#hc_sorted_index = array([0,1,3,2])
households_data = {
"household_id":arange(20000)+1,
"grid_id": array(19950*[1] + 50*[0]),
"income": array(1000*[1000] + 1000*[10000] + 2000*[20000] + 1000*[35000] + 2000*[45000] +
1000*[50000] + 2000*[67000]+ 2000*[90000] + 1000*[100005] + 2000*[110003] +
1000*[120000] + 1000*[200000] + 2000*[500000] + 1000*[630000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [83246]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
cats = 4
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+1]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:4]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
#model.run(year=2001, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2001, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[4:8]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[4]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+4],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i+4]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+5]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[4:8]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
#model.run(year=2002, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2002, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[8:12]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[8]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+8],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i+8]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+9]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[8:12]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))