本文整理汇总了Python中types.FunctionType.__repr__方法的典型用法代码示例。如果您正苦于以下问题:Python FunctionType.__repr__方法的具体用法?Python FunctionType.__repr__怎么用?Python FunctionType.__repr__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类types.FunctionType
的用法示例。
在下文中一共展示了FunctionType.__repr__方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Primer
# 需要导入模块: from types import FunctionType [as 别名]
# 或者: from types.FunctionType import __repr__ [as 别名]
class Primer():
'''An asynchronous cache implementation. Maintains multiple recursive calls stably.'''
def __init__(self,func):
for n in list(n for n in set(dir(func)) - set(dir(self)) if n != '__class__'):
setattr(self, n, getattr(func, n))
self._m=Manager()
self._e= self._m.Event()
self._d=self._m.dict()
self._f=dumps(func.__code__)
self._n=func.__name__
self._q=Queue()
self.func=FunctionType(loads(self._f),globals(),"a_func")
globals()[self._n]=partial(_getValue,self._d,self._q,self._e,True,self.func)
globals()[self._n].apply_async=partial(_getValue,self._d,self._q,self._e,False,self.func)
self._t=Process(target=_taskManager,args=(self._q,self._d,self._f,self._n, self._e))
self._t.start()
def apply_async(self,*item):
return _getValue(self._d,self._q,self._e,False,self.func,*item)
def __call__(self,*item):
return _getValue(self._d,self._q,self._e,True,self.func,*item)
def __del__(self):
self._t.terminate()
def __repr__(self):
return 'concurrent.Cache('+self.func.__repr__()+')'
示例2: Cache
# 需要导入模块: from types import FunctionType [as 别名]
# 或者: from types.FunctionType import __repr__ [as 别名]
#.........这里部分代码省略.........
.. note:: Be careful when picking how to call your functions if you are looking
for speed. Given that the fibonacci sequence is roughly linear in
dependencies with caching, there isn't a significant speedup. When in
doubt, :mod:`cProfile` (or :mod:`profile`) are your friends.
.. todo:: Eventually provide automatic profiling to help with this part.
A good use for this would be in less sequential computation spaces, such as in
factoring. When a pair of factors are found, each can be factored asynchronously
to find all the prime factors recursively. When a factor in a factor pair is found
that are known to be prime, or otherwise has its factors known, then only
one needs to be factored further. At this point, blindly branching and factoring
will have one side yield the cached value, and the other creating a new process.
Given the Fibonacci example above, this will happen on every call that isn't the
first call, yielding to `n` processes being spawned and using system resources.
Simply caching the naive Fibonacci function is just about the fastest way to use it.
To avoid unnecessary branching automatically, you can use the batch_async method
similarly to the apply_async method, except each set of arguments, even if they're
singular, must be wrapped in a tuple. Applying this to the Fibonacci function yields.
>>> @Cache
... def fibonacci(n):
... if n < 2: # Not bothering with input value checking here.
... return 1
... fibonacci.batch_async((n-1,),(n-2,))
... return fibonacci(n-1)+fibonacci(n-2)
...
>>> fibonacci(200)
453973694165307953197296969697410619233826L
This makes the branching optimal whenever possible. Race conditions might cause
issues, but those caused by python's built in Manager cannot be mitigated easily.
For the fibonnacci sequence, this will likely just revert the computation to a
mostly synchronous and sequential calculation, which is optimal for this version
of calculating the Fibonacci sequence.
.. note:: There are `much better algorithms
<http://en.wikipedia.org/wiki/Fibonacci_sequence#Matrix_form>`_ for
calculating Fibonacci sequence elements; some of which are better suited
for this type of caching.
'''
# Additionally, one can test whether a value has been calculated before by using
# ``(*{item}) in {cache}``. Calls of this type will be faster if iterable objects
# are passed to the ``in`` operator. This allows one to avoid unnecessary branching
# and process creation. Using this, the same example becomes::
#
# >>> @Cache
# ... def fibonacci(n):
# ... if n < 2: # Not bothering with input value checking here.
# ... return 1
# ... if n-1 not in fibonacci or n-2 not in fibonacci:
# ... fibonacci.apply_async(n-1)
# ... fibonacci.apply_async(n-2)
# ... return fibonacci(n-1)+fibonacci(n-2)
# ...
# >>> fibonacci(5)
# 8
def __init__(self,func):
for n in list(n for n in set(dir(func)) - set(dir(self)) if n != '__class__'):
setattr(self, n, getattr(func, n))
setattr(self, "__doc__", getattr(func, "__doc__"))
self._m=Manager()
self._e= self._m.Event()
self._d=self._m.dict()
self._f=dumps(func.__code__)
self._n=func.__name__
self._q=Queue()
self.func=FunctionType(loads(self._f),globals(),"a_func")
globals()[self._n]=partial(_getValue,self._d,self._q,self._e,True,self.func)
globals()[self._n].apply_async=partial(_getValue,self._d,self._q,self._e,False,self.func)
globals()[self._n].batch_async=partial(_batchAsync,self._d,self._q,self.func)
#setattr(globals()[self._n],"__contains__",self.__contains__)
self._t=Process(target=_taskManager,args=(self._q,self._d,self._f,self._n, self._e))
self._t.start()
atexit.register(_closeProcessGracefully, self) #TODO: Make this line not necessary.
def apply_async(self,*item):
"""
Calling this method starts up a new process of the function call in question.
This does not retrieve an answer.
"""
return _getValue(self._d,self._q,self._e,False,self.func,*item)
def batch_async(self,*items):
"""
This method examines the arguments passed in for how to branch optimally
then does so. This does not retrieve the answers, just like apply_async does not.
The arguments must each be a complete set of the arguments passed into the function
but in tuple form. If the cached function only takes one argument, wrap it with
parenthesis and add a comma before the closing parenthesis.
"""
_batchAsync(self._d,self._q,self.func,*items)
def __call__(self,*item):
return _getValue(self._d,self._q,self._e,True,self.func,*item)
def __del__(self):
_closeProcessGracefully(self)
def __repr__(self):
return 'concurrent.Cache('+self.func.__repr__()+')'