当前位置: 首页>>代码示例>>Python>>正文


Python graph_runtime.create函数代码示例

本文整理汇总了Python中tvm.contrib.graph_runtime.create函数的典型用法代码示例。如果您正苦于以下问题:Python create函数的具体用法?Python create怎么用?Python create使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了create函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: helper

def helper(symbol, inputs, dtype,
           np_forward, np_backward=None):
    ishapes = {}
    input_syms = []
    np_inputs = {}
    for (k, v) in inputs.items():
        ishapes.update({k: v[0]})
        np_inputs.update({k: np.random.uniform(size=v[0]).astype(dtype)})
        if len(v) > 1:
            input_syms.append(v[1])

    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(symbol, target, ishapes)
        m = graph_runtime.create(graph, lib, ctx)
        m.run(**np_inputs)
        y_np = np_forward(**np_inputs)
        out = m.get_output(0, tvm.nd.empty(y_np.shape, dtype))
        np.testing.assert_allclose(out.asnumpy(), y_np, atol=1e-5, rtol=1e-5)

        # backward
        if np_backward:
            graph._set_symbol_list_attr("grad_ys", symbol)
            for x in input_syms:
                graph._set_symbol_list_attr("grad_xs", x)
            graph._set_symbol_list_attr("grad_ys_out_grad", sym.Variable("head_grads"))
            graph = graph.apply("Gradient")
            ishapes.update({"head_grads": y_np.shape})
            graph, lib, _ = nnvm.compiler.build(graph, target, ishapes)
            m = graph_runtime.create(graph, lib, ctx)
            head_grads = np.random.uniform(size=y_np.shape).astype(dtype)
            y_np = head_grads * np_backward(**np_inputs)
            m.run(head_grads=head_grads, **np_inputs)
            out = m.get_output(0, tvm.nd.empty(y_np.shape, dtype))

            np.testing.assert_allclose(out.asnumpy(), y_np, atol=1e-5, rtol=1e-5)
开发者ID:masa-ito-fj,项目名称:nnvm,代码行数:35,代码来源:test_top_level1.py

示例2: test_concatenate_conv2d

def test_concatenate_conv2d():
    ch = 3
    size = 8
    data = sym.Variable(name="data")
    concat = sym.concatenate(data, data, axis=1)
    conv = sym.conv2d(data=concat, kernel_size=(1,1), channels=ch*2, use_bias=False, name="conv")
    net = sym.elemwise_add(concat, conv)

    dtype="float32"
    dshape = (1, ch, size, size)
    kshape = (ch*2, ch*2, 1, 1)
    oshape = (1, ch*2, size, size)
    shape_dict = {"data": dshape}

    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(net, target, shape_dict)
        # data, conv weight, conv op, concat
        assert graph.index.num_nodes == 4

        data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
        kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
        m = graph_runtime.create(graph, lib, ctx)
        m.run(data=data, conv_weight=kernel)
        # get output
        out = m.get_output(0, tvm.nd.empty(oshape, dtype))

        concat = np.concatenate((data.asnumpy(), data.asnumpy()), axis=1)
        conv = topi.testing.conv2d_nchw_python(
            concat, kernel.asnumpy(), (1,1), 'SAME')
        ref = concat + conv
        tvm.testing.assert_allclose(out.asnumpy(), ref, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:31,代码来源:test_op_fusion.py

示例3: tune_and_evaluate

def tune_and_evaluate(tuning_opt):
    # extract workloads from nnvm graph
    print("Extract tasks...")
    net, params, data_shape, out_shape = get_network(model_name, batch_size)
    tasks = autotvm.task.extract_from_graph(net, target=target,
                                            shape={'data': data_shape}, dtype=dtype,
                                            symbols=(nnvm.sym.conv2d,))

    # run tuning tasks
    print("Tuning...")
    tune_kernels(tasks, **tuning_opt)

    # compile kernels with history best records
    with autotvm.apply_history_best(log_file):
        print("Compile...")
        with nnvm.compiler.build_config(opt_level=3):
            graph, lib, params = nnvm.compiler.build(
                net, target=target, shape={'data': data_shape}, params=params, dtype=dtype)

        # upload parameters to device
        ctx = tvm.cpu()
        data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
        module = runtime.create(graph, lib, ctx)
        module.set_input('data', data_tvm)
        module.set_input(**params)

        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
开发者ID:LANHUIYING,项目名称:tvm,代码行数:32,代码来源:tune_nnvm_x86.py

示例4: test_forward_where

def test_forward_where():
    cond = mx.sym.var('cond')
    x = mx.sym.var('x')
    y = mx.sym.var('y')
    dshape = (2, 2)
    dtype = 'float32'
    mx_sym = mx.sym.where(cond, x, y)
    np_cond = np.array([[0, 1], [-1, 0]]).astype(dtype)
    np_x = np.random.uniform(size=dshape).astype(dtype)
    np_y = np.random.uniform(size=dshape).astype(dtype)
    mx_cond = mx.nd.array(np_cond)
    mx_x = mx.nd.array(np_x)
    mx_y = mx.nd.array(np_y)
    mod = mx.mod.Module(mx_sym, label_names=None, data_names=['cond', 'x', 'y'])
    mod.bind(data_shapes=[('cond', dshape), ('x', dshape), ('y', dshape)], for_training=False)
    mod.init_params()
    args, auxs = mod.get_params()
    mx_out = mx.nd.where(mx_cond, mx_x, mx_y).asnumpy()
    out_shape = dshape
    new_sym, params = frontend.from_mxnet(mx_sym, args, auxs)
    shape_dict = {'cond': dshape, 'x': dshape, 'y': dshape}
    for target, ctx in ctx_list():
        with nnvm.compiler.build_config(opt_level=3):
            graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params)
        m = graph_runtime.create(graph, lib, ctx)
        # set inputs
        m.set_input("cond", tvm.nd.array(np_cond))
        m.set_input("x", tvm.nd.array(np_x))
        m.set_input("y", tvm.nd.array(np_y))
        m.set_input(**params)
        m.run()
        # get outputs
        tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy()
        tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:34,代码来源:test_forward.py

示例5: test_injective_conv2d

def test_injective_conv2d():
    channels = 16
    data = sym.Variable(name="data")
    pool = sym.global_avg_pool2d(data=data)
    weight = sym.reshape(pool, shape=[1, channels, 1, 1])
    residual = sym.conv2d(data=data, kernel_size=(3,3), channels=channels, padding=(1, 1),
                          layout="NCHW", kernel_layout="OIHW", use_bias=False, name="conv")
    net = weight * data + residual
    size = 56
    dtype="float32"
    dshape = (1, channels, size, size)
    kshape = (channels, channels, 3, 3)
    oshape = dshape
    shape_dict = {"data": dshape}

    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(net, target, shape_dict)
        # data, global_avg_pool, conv weight, conv op, fused elemwise add
        assert graph.index.num_nodes == 5

        data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
        kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
        m = graph_runtime.create(graph, lib, ctx)
        m.run(data=data, conv_weight=kernel)
        # get output
        out = m.get_output(0, tvm.nd.empty(oshape, dtype))
        residual = topi.testing.conv2d_nchw_python(
            data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME')
        weight = np.mean(data.asnumpy(), axis=(2, 3))
        c_np = weight[:, :, np.newaxis, np.newaxis] * data.asnumpy() + residual
        tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:31,代码来源:test_op_fusion.py

示例6: test_forward_minimum

def test_forward_minimum():
    a = mx.sym.var('a')
    b = mx.sym.var('b')
    dshape = (10, 20)
    dtype = 'float32'
    mx_sym = mx.sym._internal._minimum(a, b)
    np_a = np.random.uniform(size=dshape).astype(dtype)
    np_b = np.random.uniform(size=dshape).astype(dtype)
    mx_a = mx.nd.array(np_a)
    mx_b = mx.nd.array(np_b)
    mod = mx.mod.Module(mx_sym, label_names=None, data_names=['a', 'b'])
    mod.bind(data_shapes=[('a', dshape), ('b', dshape)], for_training=False)
    mod.init_params()
    args, auxs = mod.get_params()
    mx_out = mx.nd._internal._minimum(mx_a, mx_b).asnumpy()
    out_shape = dshape
    new_sym, params = frontend.from_mxnet(mx_sym, args, auxs)
    shape_dict = {'a': dshape, 'b': dshape}
    for target, ctx in ctx_list():
        with nnvm.compiler.build_config(opt_level=3):
            graph, lib, params = nnvm.compiler.build(new_sym, target, shape_dict, params=params)
        m = graph_runtime.create(graph, lib, ctx)
        # set inputs
        m.set_input("a", tvm.nd.array(np_a))
        m.set_input("b", tvm.nd.array(np_b))
        m.set_input(**params)
        m.run()
        # get outputs
        tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy()
        tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:30,代码来源:test_forward.py

示例7: _impl_v1

    def _impl_v1(cls, inputs, attr, params):
        if 'shape' in attr:
            return _op.reshape(inputs[0], attr['shape'])

        if get_name(inputs[1]) in params:
            shape = tuple(params[inputs[1].name_hint].asnumpy())
            out = _op.reshape(inputs[0], shape)
        else:
            # Try to infer shape by precompute prune if possible.
            # TODO: good to check inputs to be in params.
            #       to be enhanced when relay support list_input_names API of NNVM
            logging.warning("Infering Reshape argument by precompute")
            func = _expr.Function(ir_pass.free_vars(inputs[1]), inputs[1])
            with tvm.relay.build_config(opt_level=0):
                graph, lib, params = tvm.relay.build(func, target="llvm", params=params)
            ctx = tvm.context("llvm", 0)
            from tvm.contrib import graph_runtime
            m = graph_runtime.create(graph, lib, ctx)
            m.set_input(**params)
            m.run()
            params_new = m.get_output(0)
            inputs.pop(1)
            out = _op.reshape(inputs[0], tuple(params_new.asnumpy().astype('int32').flatten()))

        return out
开发者ID:bddppq,项目名称:tvm,代码行数:25,代码来源:onnx.py

示例8: test_conv_ewise_injective

def test_conv_ewise_injective():
    x = sym.Variable("x")
    y = sym.conv2d(x, channels=32, kernel_size=(3, 3), groups=32,
                   name="y", padding=(1,1))
    y = sym.flatten(y + 1) + 1
    dtype = "float32"
    dshape = (1, 32, 18, 18)
    kshape = (32, 1, 3, 3)
    oshape = (1, 32* 18 * 18)
    shape_dict = {"x": dshape}

    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(y, target, shape_dict)
        m = graph_runtime.create(graph, lib, ctx)
        # print(graph.ir(join_entry_attrs=["shape"]))
        assert graph.index.num_nodes == 5
        # set input
        data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
        kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
        bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype))
        m.run(x=data, y_weight=kernel, y_bias=bias)
        # get output
        out = m.get_output(0, tvm.nd.empty(oshape, dtype))
        c_np = topi.testing.depthwise_conv2d_python_nchw(
            data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME')
        c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1) + 1
        c_np = c_np.reshape(c_np.shape[0], np.prod(c_np.shape[1:])) + 1
        np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)
开发者ID:masa-ito-fj,项目名称:nnvm,代码行数:28,代码来源:test_op_fusion.py

示例9: test_gru_like

def test_gru_like():
    def unit(rnn_dim):
        X = relay.var("X", shape=(1, rnn_dim))
        W = relay.var("y", shape=(3 * rnn_dim, rnn_dim))
        matmul = relay.nn.dense(X, W)
        splitted = relay.split(matmul, indices_or_sections=3, axis=1)
        out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
        return relay.Function([X, W], out)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def unit_numpy(X, W):
        prod = np.dot(X, W.transpose())
        splits = np.split(prod, indices_or_sections=3, axis=1)
        return sigmoid(splits[0]) + np.tanh(splits[1]) * np.exp(splits[2])

    dtype = "float32"
    rnn_dim = 1000
    x = np.random.rand(1, rnn_dim).astype(dtype)
    y = np.random.rand(3*rnn_dim, rnn_dim).astype(dtype) * 0.01 - 0.005
    out_shape = (1, rnn_dim)
    z = unit(rnn_dim)

    for target, ctx in ctx_list():
        with relay.build_config(opt_level=2):
            graph, lib, params = relay.build(z, target)
            m = graph_runtime.create(graph, lib, ctx)
            m.set_input("X", tvm.nd.array(x.astype(dtype)))
            m.set_input("y", tvm.nd.array(y.astype(dtype)))
            m.set_input(**params)
            m.run()
            out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).asnumpy()
            ref = unit_numpy(x, y)
            tvm.testing.assert_allclose(out, ref, rtol=1e-5, atol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:35,代码来源:test_backend_graph_runtime.py

示例10: test_non_max_suppression

def test_non_max_suppression():
    dshape = (1, 5, 6)
    data = sym.Variable("data")
    valid_count = sym.Variable("valid_count", dtype="int32")
    iou_threshold = 0.7
    force_suppress = True
    top_k = 2
    out = sym.non_max_suppression(data=data, valid_count=valid_count, return_indices=False,
                                  iou_threshold=iou_threshold, force_suppress=force_suppress, top_k=top_k)

    np_data = np.array([[[0, 0.8, 1, 20, 25, 45], [1, 0.7, 30, 60, 50, 80],
                         [0, 0.4, 4, 21, 19, 40], [2, 0.9, 35, 61, 52, 79],
                         [1, 0.5, 100, 60, 70, 110]]]).astype("float32")
    np_valid_count = np.array([4]).astype("int32")
    np_result = np.array([[[2, 0.9, 35, 61, 52, 79], [0, 0.8, 1, 20, 25, 45],
                           [-1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1],
                           [-1, -1, -1, -1, -1, -1]]])

    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(out, target, {"data": dshape, "valid_count": (dshape[0],)},
                                            dtype={"data": "float32", "valid_count": "int32"})
        m = graph_runtime.create(graph, lib, ctx)
        m.set_input(**{"data": np_data, "valid_count": np_valid_count})
        m.run()
        tvm_out = m.get_output(0, tvm.nd.empty(np_result.shape, "float32"))
        tvm.testing.assert_allclose(tvm_out.asnumpy(), np_result, atol=1e-5, rtol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:26,代码来源:test_top_level4.py

示例11: check_verify

 def check_verify():
     mod = graph_runtime.create(graph, mhost, ctx)
     mod.set_input(**params)
     mod.run()
     out = mod.get_output(0, tvm.nd.empty(shape))
     np.testing.assert_equal(
         out.asnumpy(), tensor_a + tensor_b - tensor_c + tensor_d)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:7,代码来源:test_runtime_heterogeneous.py

示例12: run

def run(args):
    onnx_model = onnx.load_model(os.path.join(args.test_dir, 'model.onnx'))
    symbol, params = nnvm.frontend.from_onnx(onnx_model)
    input_names = symbol.list_input_names()
    output_names = symbol.list_output_names()

    test_data_dir = os.path.join(args.test_dir, 'test_data_set_0')
    inputs, outputs = load_test_data(test_data_dir, input_names, output_names)
    inputs = dict(inputs)

    # assert len(input_names) == len(inputs) + len(params)
    # assert len(output_names) == len(outputs)

    graph, lib, params = compile(
        symbol, args.target, input_names, inputs, params,
        args.opt_level, args.autotvm_log)

    if args.dump_nnvm:
        print(graph.ir())
        print(graph.json())

    ctx = tvm.gpu()

    # Prepare inputs.
    tvm_inputs = {}
    for name, value in inputs.items():
        tvm_inputs[name] = tvm.nd.array(value, ctx=ctx)
    for name, value in params.items():
        tvm_inputs[name] = tvm.nd.array(value, ctx=ctx)

    graph_module = None
    if args.debug:
        try:
            graph_module = debug_runtime.create(graph, lib, ctx)
        except:
            print('debug_runtime is disabled. '
                  'Set USE_GRAPH_RUNTIME_DEBUG=ON and rebuild TVM')
    if graph_module is None:
        graph_module = graph_runtime.create(graph, lib, ctx)

    graph_module.set_input(**tvm_inputs)

    graph_module.run()

    for i, (name, expected) in enumerate(outputs):
        tvm_output = tvm.nd.empty(expected.shape, expected.dtype, ctx=ctx)
        actual = graph_module.get_output(i, tvm_output).asnumpy()
        np.testing.assert_allclose(expected, actual,
                                   rtol=1e-3, atol=1e-4), name
        print('%s: OK' % name)
    print('ALL OK')

    if args.iterations > 1:
        num_iterations = args.iterations - 1
        start = time.time()
        for t in range(num_iterations):
            graph_module.run()
            cupy.cuda.device.Device().synchronize()
        elapsed = time.time() - start
        print('Elapsed: %.3f msec' % (elapsed * 1000 / num_iterations))
开发者ID:shinh,项目名称:test,代码行数:60,代码来源:run_onnx_tvm.py

示例13: test_multibox_transform_loc

def test_multibox_transform_loc():
    batch_size = 1
    num_anchors = 3
    num_classes = 3
    cls_prob = sym.Variable("cls_prob")
    loc_preds = sym.Variable("loc_preds")
    anchors = sym.Variable("anchors")
    transform_loc_data, valid_count = sym.multibox_transform_loc(cls_prob=cls_prob, loc_pred=loc_preds,
                                                                 anchor=anchors)
    out = sym.non_max_suppression(data=transform_loc_data, valid_count=valid_count, return_indices=False)

    # Manually create test case
    np_cls_prob = np.array([[[0.2, 0.5, 0.3], [0.25, 0.3, 0.45], [0.7, 0.1, 0.2]]])
    np_loc_preds = np.array([[0.1, -0.2, 0.3, 0.2, 0.2, 0.4, 0.5, -0.3, 0.7, -0.2, -0.4, -0.8]])
    np_anchors = np.array([[[-0.1, -0.1, 0.1, 0.1], [-0.2, -0.2, 0.2, 0.2], [1.2, 1.2, 1.5, 1.5]]])

    expected_np_out = np.array([[[1, 0.69999999, 0, 0, 0.10818365, 0.10008108],
                                 [0, 0.44999999, 1, 1, 1, 1],
                                 [0, 0.30000001, 0, 0, 0.22903419, 0.20435292]]])

    dtype = "float32"
    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(out, target, {"cls_prob": (batch_size, num_anchors, num_classes),
                                                          "loc_preds": (batch_size, num_anchors * 4),
                                                          "anchors": (1, num_anchors, 4)})
        m = graph_runtime.create(graph, lib, ctx)
        m.set_input(**{"cls_prob": np_cls_prob.astype(dtype), "loc_preds": np_loc_preds.astype(dtype), "anchors": np_anchors.astype(dtype)})
        m.run()
        tvm_out = m.get_output(0, tvm.nd.empty(expected_np_out.shape, dtype))
        tvm.testing.assert_allclose(tvm_out.asnumpy(), expected_np_out, atol=1e-5, rtol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:30,代码来源:test_top_level4.py

示例14: test_nms

def test_nms():
    dshape = (1, 5, 6)
    data = sym.Variable("data")
    valid_count = sym.Variable("valid_count", dtype="int32")
    nms_threshold = 0.7
    force_suppress = True
    nms_topk = 2
    out = sym.nms(data=data, valid_count=valid_count, nms_threshold=nms_threshold,
                  force_suppress=force_suppress, nms_topk=nms_topk)

    np_data = np.array([[[0, 0.8, 1, 20, 25, 45], [1, 0.7, 30, 60, 50, 80],
                         [0, 0.4, 4, 21, 19, 40], [2, 0.9, 35, 61, 52, 79],
                         [1, 0.5, 100, 60, 70, 110]]]).astype("float32")
    np_valid_count = np.array([4]).astype("int32")
    np_result = np.array([[[2, 0.9, 35, 61, 52, 79], [0, 0.8, 1, 20, 25, 45],
                           [0, 0.4, 4, 21, 19, 40], [-1, 0.9, 35, 61, 52, 79],
                           [-1, -1, -1, -1, -1, -1]]])

    target = "llvm"
    ctx = tvm.cpu()
    graph, lib, _ = nnvm.compiler.build(out, target, {"data": dshape, "valid_count": (dshape[0],)},
                                        dtype={"data": "float32", "valid_count": "int32"})
    m = graph_runtime.create(graph, lib, ctx)
    m.set_input(**{"data": np_data, "valid_count": np_valid_count})
    m.run()
    out = m.get_output(0, tvm.nd.empty(np_result.shape, "float32"))
    tvm.testing.assert_allclose(out.asnumpy(), np_result, atol=1e-5, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:27,代码来源:test_top_level4.py

示例15: test_mixed_precision

def test_mixed_precision():
    x = sym.Variable("x")
    dtype = "int8"
    out_dtype="int32"
    y = sym.conv2d(x,
                   channels=10,
                   kernel_size=(3,3),
                   name="y",
                   padding=(1,1),
                   use_bias=False,
                   out_dtype="int32")
    dshape = (1, 3, 18, 18)
    kshape = (10, 3, 3, 3)
    oshape = (1, 10, 18, 18)
    shape_dict = {"x": dshape}
    dtype_dict = {"x": dtype}
    for target, ctx in ctx_list():
        graph, lib, _ = nnvm.compiler.build(y, target, shape_dict, dtype_dict)
        m = graph_runtime.create(graph, lib, ctx)
        data = tvm.nd.array(np.random.uniform(-127, 127, size=dshape).astype(dtype))
        kernel = tvm.nd.array(np.random.uniform(-127, 127, size=kshape).astype(dtype))
        m.run(x=data, y_weight=kernel)
        out = m.get_output(0, tvm.nd.empty(oshape, out_dtype))
        c_np = topi.testing.conv2d_nchw_python(
            data.asnumpy().astype(out_dtype),
            kernel.asnumpy().astype(out_dtype), 1, 1)
        tvm.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:27,代码来源:test_top_level2.py


注:本文中的tvm.contrib.graph_runtime.create函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。