本文整理汇总了Python中tree.Tree.create_node方法的典型用法代码示例。如果您正苦于以下问题:Python Tree.create_node方法的具体用法?Python Tree.create_node怎么用?Python Tree.create_node使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tree.Tree
的用法示例。
在下文中一共展示了Tree.create_node方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_family_tree
# 需要导入模块: from tree import Tree [as 别名]
# 或者: from tree.Tree import create_node [as 别名]
def create_family_tree():
## Create the family tree
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent="harry")
tree.create_node("Bill", "bill", parent="harry")
tree.create_node("Diane", "diane", parent="jane")
tree.create_node("Mary", "mary", parent="diane")
tree.create_node("Mark", "mark", parent="jane")
return tree
示例2: DecisionTree
# 需要导入模块: from tree import Tree [as 别名]
# 或者: from tree.Tree import create_node [as 别名]
#.........这里部分代码省略.........
if isinstance(value_dict, dict):
new_value = min(value_dict.keys())
if new_value < min_value[0]:
min_value = (
new_value,
key,
counted_attribs[key].get(new_value),
)
return min_value, comp_entropy
def generate_tree(
self, parent=None, atrr_names=None, training_data=None
):
if not atrr_names:
return self.decision_tree
counted_attribs = self.entropy_counter(
atrr_names=atrr_names, training_data=training_data
)
lower_entropy, comp_entropy = self.get_lower_entropy(
counted_attribs,
attr_names=atrr_names
)
if not lower_entropy:
return self.decision_tree
ATTRIBUTE_NAMES = {atrr_names[value]: value for value in atrr_names}
entropy, attribute_name, attribute_value = lower_entropy
attribute_line = ATTRIBUTE_NAMES.pop(attribute_name)
if not self.decision_tree.nodes:
root = self.create_identifier(attribute_name, attribute_name)
self.decision_tree.create_node(
name=attribute_name,
identifier=root
)
for attr_value in self.ATTRIBUTE_VALUES:
name = self.create_identifier(attribute_name, attr_value)
self.decision_tree.create_node(
name=name,
identifier=name,
parent=root
)
if attr_value != attribute_value:
victory = self.create_identifier(
attribute_name, attr_value, 'True'
)
self.decision_tree.create_node(
name=victory,
identifier=victory,
parent=name
)
parent = self.create_identifier(attribute_name, attribute_value)
elif parent:
if entropy < comp_entropy:
for attr_value in self.ATTRIBUTE_VALUES:
name = self.create_identifier(attribute_name, attr_value)
self.decision_tree.create_node(
name=name,
identifier=name,
parent=parent
)
if attr_value != attribute_value:
victory = self.create_identifier(
示例3: print
# 需要导入模块: from tree import Tree [as 别名]
# 或者: from tree.Tree import create_node [as 别名]
print(','.join([tree[node].tag for node in tree.expand_tree()]))
example("All family members (with identifiers) but Diane's sub-family:")
tree.show(idhidden=False, filter=lambda x: x.identifier != 'diane')
example("Let me introduce Diane family only:")
sub_t = tree.subtree('diane')
sub_t.show()
example("Children of Diane:")
for child in tree.is_branch('diane'):
print(tree[child].tag)
example("New members join Jill's family:")
new_tree = Tree()
new_tree.create_node("n1", 1) # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste('bill', new_tree)
tree.show()
example("They leave after a while:")
tree.remove_node(1)
tree.show()
example("Now Mary moves to live with grandfather Harry:")
tree.move_node('mary', 'harry')
tree.show()
example("A big family for Mark to send message to the oldest Harry:")
print(','.join([tree[node].tag for node in tree.rsearch('mark')]))
示例4: Tree
# 需要导入模块: from tree import Tree [as 别名]
# 或者: from tree.Tree import create_node [as 别名]
if new_score >= current_score:
break
else:
current_score = new_score
if __name__ == "__main__":
file_name = sys.argv[1]
tree = Tree()
r = c = -1
#build initial tree
with open(file_name, 'r') as fp:
lines = fp.readlines()
r, c = map(int, lines[0].split())
current_row = 0
tree.create_node(identifier="root")
for line in lines[1:]:
tree.create_node(LineMarker(current_row), identifier=current_row, parent="root")
current_col = 0
for ch in line:
if ch == '#':
tree.create_node(SquareCommand(current_row, current_col, 0), parent=current_row)
current_col += 1
current_row += 1
#print(tree)
#try reduce
optimize(tree, r)