本文整理汇总了Python中traitlets.utils.importstring.import_item函数的典型用法代码示例。如果您正苦于以下问题:Python import_item函数的具体用法?Python import_item怎么用?Python import_item使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了import_item函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_exporter
def get_exporter(name):
"""Given an exporter name or import path, return a class ready to be instantiated
Raises ValueError if exporter is not found
"""
if name == 'ipynb':
name = 'notebook'
try:
return entrypoints.get_single('nbconvert.exporters', name).load()
except entrypoints.NoSuchEntryPoint:
try:
return entrypoints.get_single('nbconvert.exporters', name.lower()).load()
except entrypoints.NoSuchEntryPoint:
pass
if '.' in name:
try:
return import_item(name)
except ImportError:
log = get_logger()
log.error("Error importing %s" % name, exc_info=True)
raise ValueError('Unknown exporter "%s", did you mean one of: %s?'
% (name, ', '.join(get_export_names())))
示例2: _get_nbextension_metadata
def _get_nbextension_metadata(module):
"""Get the list of nbextension paths associated with a Python module.
Returns a tuple of (the module, [{
'section': 'notebook',
'src': 'mockextension',
'dest': '_mockdestination',
'require': '_mockdestination/index'
}])
Parameters
----------
module : str
Importable Python module exposing the
magic-named `_jupyter_nbextension_paths` function
"""
m = import_item(module)
if not hasattr(m, "_jupyter_nbextension_paths"):
raise KeyError(
"The Python module {} is not a valid nbextension, "
"it is missing the `_jupyter_nbextension_paths()` method.".format(module)
)
nbexts = m._jupyter_nbextension_paths()
return m, nbexts
示例3: handle_comm_opened
def handle_comm_opened(comm, msg):
"""Static method, called when a widget is constructed."""
class_name = str(msg['content']['data']['widget_class'])
if class_name in Widget.widget_types:
widget_class = Widget.widget_types[class_name]
else:
widget_class = import_item(class_name)
widget = widget_class(comm=comm)
示例4: _get_nbextension_metadata
def _get_nbextension_metadata(module):
"""Get the list of nbextension paths associated with a Python module."""
m = import_item(module)
if not hasattr(m, '_jupyter_nbextension_paths'):
raise KeyError(
'The Python module {} is not a valid nbextension'.format(module))
nbexts = m._jupyter_nbextension_paths()
return m, nbexts
示例5: get_labextension_config_python
def get_labextension_config_python(module):
"""Get the labextension configuration data associated with a Python module.
Parameters
-----------
module : str
Importable Python module exposing the
magic-named `_jupyter_labextension_config` function
"""
m = import_item(module)
if not hasattr(m, '_jupyter_labextension_config'):
return {}
return m._jupyter_labextension_config()
示例6: register_preprocessor
def register_preprocessor(self, preprocessor, enabled=False):
"""
Register a preprocessor.
Preprocessors are classes that act upon the notebook before it is
passed into the Jinja templating engine. preprocessors are also
capable of passing additional information to the Jinja
templating engine.
Parameters
----------
preprocessor : :class:`~nbconvert.preprocessors.Preprocessor`
A dotted module name, a type, or an instance
enabled : bool
Mark the preprocessor as enabled
"""
if preprocessor is None:
raise TypeError('preprocessor must not be None')
isclass = isinstance(preprocessor, type)
constructed = not isclass
# Handle preprocessor's registration based on it's type
if constructed and isinstance(preprocessor, py3compat.string_types):
# Preprocessor is a string, import the namespace and recursively call
# this register_preprocessor method
preprocessor_cls = import_item(preprocessor)
return self.register_preprocessor(preprocessor_cls, enabled)
if constructed and hasattr(preprocessor, '__call__'):
# Preprocessor is a function, no need to construct it.
# Register and return the preprocessor.
if enabled:
preprocessor.enabled = True
self._preprocessors.append(preprocessor)
return preprocessor
elif isclass and issubclass(preprocessor, HasTraits):
# Preprocessor is configurable. Make sure to pass in new default for
# the enabled flag if one was specified.
self.register_preprocessor(preprocessor(parent=self), enabled)
elif isclass:
# Preprocessor is not configurable, construct it
self.register_preprocessor(preprocessor(), enabled)
else:
# Preprocessor is an instance of something without a __call__
# attribute.
raise TypeError('preprocessor must be callable or an importable constructor, got %r' % preprocessor)
示例7: _register_filter
def _register_filter(self, environ, name, jinja_filter):
"""
Register a filter.
A filter is a function that accepts and acts on one string.
The filters are accessible within the Jinja templating engine.
Parameters
----------
name : str
name to give the filter in the Jinja engine
filter : filter
"""
if jinja_filter is None:
raise TypeError('filter')
isclass = isinstance(jinja_filter, type)
constructed = not isclass
#Handle filter's registration based on it's type
if constructed and isinstance(jinja_filter, py3compat.string_types):
#filter is a string, import the namespace and recursively call
#this register_filter method
filter_cls = import_item(jinja_filter)
return self._register_filter(environ, name, filter_cls)
if constructed and hasattr(jinja_filter, '__call__'):
#filter is a function, no need to construct it.
environ.filters[name] = jinja_filter
return jinja_filter
elif isclass and issubclass(jinja_filter, HasTraits):
#filter is configurable. Make sure to pass in new default for
#the enabled flag if one was specified.
filter_instance = jinja_filter(parent=self)
self._register_filter(environ, name, filter_instance)
elif isclass:
#filter is not configurable, construct it
filter_instance = jinja_filter()
self._register_filter(environ, name, filter_instance)
else:
#filter is an instance of something without a __call__
#attribute.
raise TypeError('filter')
示例8: _get_labextension_metadata
def _get_labextension_metadata(module):
"""Get the list of labextension paths associated with a Python module.
Returns a tuple of (the module, [{
'name': 'mockextension',
'src': 'static',
}])
Parameters
----------
module : str
Importable Python module exposing the
magic-named `_jupyter_labextension_paths` function
"""
m = import_item(module)
if not hasattr(m, '_jupyter_labextension_paths'):
raise KeyError('The Python module {} is not a valid labextension'.format(module))
labexts = m._jupyter_labextension_paths()
return m, labexts
示例9: from_notebook_node
def from_notebook_node(self, nb, resources=None, **kw):
langinfo = nb.metadata.get('language_info', {})
# delegate to custom exporter, if specified
exporter_name = langinfo.get('nbconvert_exporter')
if exporter_name and exporter_name != 'script':
self.log.debug("Loading script exporter: %s", exporter_name)
from .export import exporter_map
if exporter_name not in self._exporters:
if exporter_name in exporter_map:
Exporter = exporter_map[exporter_name]
else:
self.log.debug("Importing custom Exporter: %s", exporter_name)
Exporter = import_item(exporter_name)
self._exporters[exporter_name] = Exporter(parent=self)
exporter = self._exporters[exporter_name]
return exporter.from_notebook_node(nb, resources, **kw)
self.file_extension = langinfo.get('file_extension', '.txt')
self.output_mimetype = langinfo.get('mimetype', 'text/plain')
return super(ScriptExporter, self).from_notebook_node(nb, resources, **kw)
示例10: _get_bundler_metadata
def _get_bundler_metadata(module):
"""Gets the list of bundlers associated with a Python package.
Returns a tuple of (the module, [{
'name': 'unique name of the bundler',
'label': 'file menu item label for the bundler',
'module_name': 'dotted package/module name containing the bundler',
'group': 'download or deploy parent menu item'
}])
Parameters
----------
module : str
Importable Python module exposing the
magic-named `_jupyter_bundler_paths` function
"""
m = import_item(module)
if not hasattr(m, '_jupyter_bundler_paths'):
raise KeyError('The Python module {} does not contain a valid bundler'.format(module))
bundlers = m._jupyter_bundler_paths()
return m, bundlers
示例11: _get_server_extension_metadata
def _get_server_extension_metadata(module):
"""Load server extension metadata from a module.
Returns a tuple of (
the package as loaded
a list of server extension specs: [
{
"module": "mockextension"
}
]
)
Parameters
----------
module : str
Importable Python module exposing the
magic-named `_jupyter_server_extension_paths` function
"""
m = import_item(module)
if not hasattr(m, '_jupyter_server_extension_paths'):
raise KeyError(u'The Python module {} does not include any valid server extensions'.format(module))
return m, m._jupyter_server_extension_paths()
示例12: _postprocessor_class_changed
def _postprocessor_class_changed(self, change):
new = change['new']
if new.lower() in self.postprocessor_aliases:
new = self.postprocessor_aliases[new.lower()]
if new:
self.postprocessor_factory = import_item(new)
示例13: _writer_class_changed
def _writer_class_changed(self, change):
new = change['new']
if new.lower() in self.writer_aliases:
new = self.writer_aliases[new.lower()]
self.writer_factory = import_item(new)
示例14: autoawait
def autoawait(self, parameter_s):
"""
Allow to change the status of the autoawait option.
This allow you to set a specific asynchronous code runner.
If no value is passed, print the currently used asynchronous integration
and whether it is activated.
It can take a number of value evaluated in the following order:
- False/false/off deactivate autoawait integration
- True/true/on activate autoawait integration using configured default
loop
- asyncio/curio/trio activate autoawait integration and use integration
with said library.
- `sync` turn on the pseudo-sync integration (mostly used for
`IPython.embed()` which does not run IPython with a real eventloop and
deactivate running asynchronous code. Turning on Asynchronous code with
the pseudo sync loop is undefined behavior and may lead IPython to crash.
If the passed parameter does not match any of the above and is a python
identifier, get said object from user namespace and set it as the
runner, and activate autoawait.
If the object is a fully qualified object name, attempt to import it and
set it as the runner, and activate autoawait.
The exact behavior of autoawait is experimental and subject to change
across version of IPython and Python.
"""
param = parameter_s.strip()
d = {True: "on", False: "off"}
if not param:
print("IPython autoawait is `{}`, and set to use `{}`".format(
d[self.shell.autoawait],
self.shell.loop_runner
))
return None
if param.lower() in ('false', 'off'):
self.shell.autoawait = False
return None
if param.lower() in ('true', 'on'):
self.shell.autoawait = True
return None
if param in self.shell.loop_runner_map:
self.shell.loop_runner, self.shell.autoawait = self.shell.loop_runner_map[param]
return None
if param in self.shell.user_ns :
self.shell.loop_runner = self.shell.user_ns[param]
self.shell.autoawait = True
return None
runner = import_item(param)
self.shell.loop_runner = runner
self.shell.autoawait = True
示例15: handle_comm_opened
def handle_comm_opened(comm, msg):
"""Static method, called when a widget is constructed."""
widget_class = import_item(str(msg['content']['data']['widget_class']))
widget = widget_class(comm=comm)