本文整理汇总了Python中tqdm.tqdm函数的典型用法代码示例。如果您正苦于以下问题:Python tqdm函数的具体用法?Python tqdm怎么用?Python tqdm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tqdm函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: augment_arrays
def augment_arrays(project):
array_path = os.path.join(project['path'], 'array')
augmented_path = os.path.join(project['path'], 'augmented')
shutil.rmtree(augmented_path,ignore_errors=True)
os.makedirs(augmented_path)
if project['augmentations'] is None:
print('No augmentations selected: copying train arrays as is.')
files = os.listdir(array_path)
for file in tqdm(files):
shutil.copy(os.path.join(array_path, file),augmented_path)
else:
print('Generating image augmentations:')
for img_idx, (array, label, label_name) in tqdm(enumerate(gen_arrays_from_dir(array_path))):
split_label_name = '-'.join(label_name.split('-')[2:-1])
for aug_idx, (array_aug, label_aug) in enumerate(gen_augment_arrays(array, label, project['augmentations'], project['category_rounds'][split_label_name])):
cat_idx = np.argmax(label_aug)
cat = project['categories'][cat_idx]
img_name = '{}-{:02d}-img-{}-{}'.format(img_idx, aug_idx,
cat, cat_idx)
label_name = '{}-{:02d}-label-{}-{}'.format(img_idx, aug_idx,
cat, cat_idx)
aug_path = os.path.join(augmented_path, img_name)
label_path = os.path.join(augmented_path, label_name)
np.save(aug_path, array_aug)
np.save(label_path, label_aug)
project['is_augmented'] = True
return project
示例2: to_html
def to_html(self, outdir, template=None):
pages_set = self.pages_set
if template is None:
template = textwrap.dedent("""\
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Page {page}</title>
<link rel="stylesheet" type="text/css" href="teletext.css" title="Default Style"/>
<link rel="alternative stylesheet" type="text/css" href="teletext-noscanlines.css" title="No Scanlines"/>
<script type="text/javascript" src="cssswitch.js"></script>
</head>
<body onload="set_style_from_cookie()">
{body}
</body>
</html>
""")
for magazineno, magazine in tqdm(self.magazines.items(), desc='Magazines', unit='M'):
for pageno, page in tqdm(magazine.pages.items(), desc='Pages', unit='P'):
pagestr = f'{magazineno}{pageno:02x}'
outfile = open(os.path.join(outdir, f'{pagestr}.html'), 'w')
body = '\n'.join(
subpage.to_html(pages_set) for n, subpage in sorted(page.subpages.items())
)
outfile.write(template.format(page=pagestr, body=body))
示例3: find_duplicates
def find_duplicates(directories):
for d in directories:
if not os.path.exists(d):
raise ValueError("Directory %s does not exist" % d)
elif not os.path.isdir(d):
raise ValueError("Expected %s to be a directory" % d)
file_hashes = defaultdict(set)
print("Scanning for files…")
all_files = deque()
for filename in tqdm(find_files(directories)):
all_files.append(filename)
print("Hashing %d files" % len(all_files))
with ThreadPoolExecutor() as executor:
for filename, digest in tqdm(
executor.map(get_file_hash, all_files), total=len(all_files)
):
file_hashes[digest].add(filename)
for digest, filenames in file_hashes.items():
if len(filenames) < 2:
continue
else:
yield digest, filenames
示例4: generate_code
def generate_code(self, Modal, bit, generate):
batch_size = 128
if generate=="label":
num_data = Modal.shape[0]
index = np.linspace(0, num_data - 1, num_data).astype(int)
B = np.zeros([num_data, bit], dtype=np.float32)
for iter in tqdm(xrange(num_data / batch_size + 1)):
ind = index[iter * batch_size: min((iter + 1) * batch_size, num_data)]
label = Modal[ind, :].astype(np.float32)
label = label.reshape([label.shape[0], 1, label.shape[1], 1])
Hsh_L = self.Hsh_L.eval(feed_dict={self.ph['label_input']: label})
B[ind, :] = Hsh_L
elif generate=="image":
num_data = len(Modal)
index = np.linspace(0, num_data - 1, num_data).astype(int)
B = np.zeros([num_data, bit], dtype=np.float32)
for iter in tqdm(xrange(num_data / batch_size + 1)):
ind = index[iter * batch_size: min((iter + 1) * batch_size, num_data)]
mean_pixel = np.repeat(self.meanpix[:, :, :, np.newaxis], len(ind), axis=3)
image = Modal[ind,:,:,:].astype(np.float64)
image = image - mean_pixel.astype(np.float64).transpose(3, 0, 1, 2)
Hsh_I = self.Hsh_I.eval(feed_dict={self.ph['image_input']: image})
B[ind, :] = Hsh_I
else:
num_data = Modal.shape[0]
index = np.linspace(0, num_data - 1, num_data).astype(int)
B = np.zeros([num_data, bit], dtype=np.float32)
for iter in tqdm(xrange(num_data / batch_size + 1)):
ind = index[iter * batch_size: min((iter + 1) * batch_size, num_data)]
text = Modal[ind, :].astype(np.float32)
text = text.reshape([text.shape[0], 1, text.shape[1], 1])
Hsh_T = self.Hsh_T.eval(feed_dict={self.ph['text_input']: text})
B[ind, :] = Hsh_T
B = np.sign(B)
return B
示例5: train_word2id
def train_word2id():
"""把训练集的所有词转成对应的id。"""
time0 = time.time()
print('Processing train data.')
df_train = pd.read_csv('../raw_data/question_train_set.txt', sep='\t', usecols=[0, 2, 4],
names=['question_id', 'word_title', 'word_content'], dtype={'question_id': object})
print('training question number %d ' % len(df_train))
# 没有 content 的问题用 title 来替换
na_content_indexs = list()
for i in tqdm(xrange(len(df_train))):
word_content = df_train.word_content.values[i]
if type(word_content) is float:
na_content_indexs.append(i)
print('There are %d train questions without content.' % len(na_content_indexs))
for na_index in tqdm(na_content_indexs):
df_train.at[na_index, 'word_content'] = df_train.at[na_index, 'word_title']
# 没有 title 的问题, 丢弃
na_title_indexs = list()
for i in xrange(len(df_train)):
word_title = df_train.word_title.values[i]
if type(word_title) is float:
na_title_indexs.append(i)
print('There are %d train questions without title.' % len(na_title_indexs))
df_train = df_train.drop(na_title_indexs)
print('After dropping, training question number(should be 2999952) = %d' % len(df_train))
# 转为 id 形式
p = Pool()
train_title = np.asarray(p.map(get_id4words, df_train.word_title.values))
np.save('../data/wd_train_title.npy', train_title)
train_content = np.asarray(p.map(get_id4words, df_train.word_content.values))
np.save('../data/wd_train_content.npy', train_content)
p.close()
p.join()
print('Finished changing the training words to ids. Costed time %g s' % (time.time() - time0))
示例6: createDataTxt
def createDataTxt(imagePath, annotationPath, imagesInDir, split=False):
JPG = '.jpg'
TRAINING = 'training/'
VALIDATION = 'validation/'
if split:
annotatedImages = os.listdir(annotationPath)
# np.random.shuffle(annotatedImages)
splitSize = ceil(len(annotatedImages) * 0.85)
annotatedImagesTrain = annotatedImages[:splitSize]
annotatedImagesValidation = annotatedImages[splitSize:]
else:
annotatedImagesTrain = os.listdir(join(annotationPath, TRAINING))
annotatedImagesValidation = os.listdir(join(annotationPath, VALIDATION))
with open(imagesInDir + 'train.txt', 'w') as file:
for ann in tqdm(annotatedImagesTrain, desc='Writing train.txt for input dataset'):
if isfile(join(imagePath, TRAINING, splitext(ann)[0]) + JPG):
file.write(' '.join(
[join(imagePath, TRAINING, splitext(ann)[0]) + JPG,
join(annotationPath, TRAINING, ann)]) + '\n')
with open(imagesInDir + 'val.txt', 'w') as file:
for annv in tqdm(annotatedImagesValidation, desc='Writing valid.txt for input dataset'):
if isfile(join(imagePath, VALIDATION, splitext(annv)[0]) + JPG):
file.write(' '.join(
[join(imagePath, VALIDATION, splitext(annv)[0]) + JPG,
join(annotationPath, VALIDATION, annv)]) + '\n')
return
示例7: pro_progess
def pro_progess(filepath="../data"):
height = 299
train_files = os.listdir(filepath + '/train')
train = np.zeros((len(train_files), height, height, 3), dtype=np.uint8)
labels = list(filter(lambda x: x[:3] == 'dog', train_files))
test_files = os.listdir(filepath + '/test')
test = np.zeros((len(test_files), height, height, 3), dtype=np.uint8)
for i in tqdm(range(len(train_files))):
filename = filepath + train_files[i]
img = cv2.imread(filename)
img = cv2.resize(img, (height, height))
train[i] = img[:, :, ::-1]
for i in tqdm(range(len(test_files))):
filename = filepath + test_files[i]
img = cv2.imread(filename)
img = cv2.resize(img, (height, height))
test[i] = img[:, :, ::-1]
print ('Training Data Size = %.2 GB' % (sys.getsizeof(train)/1024**3))
print ('Testing Data Size = %.2 GB' % (sys.getsizeof(test)/1024**3))
X_train, X_val, y_train, y_val = train_test_split(
train, labels, shuffle=True, test_size=0.2, random_state=42)
return X_train, X_val, y_train, y_val
示例8: normalize_features
def normalize_features(X_train, X_test):
n_features = X_train.shape[1]
feature_sums = np.sum(X_test, axis=1)
nonblack_vectors = np.where(feature_sums > 0,1,0)
#print nonblack_vectors.shape
mask = []
for x in range(X_test.shape[0]):
mask.append([nonblack_vectors[x]]*n_features)
mask = np.array(mask)
X_test_nonblack = X_test[np.where(feature_sums > 0)]
X = np.concatenate((X_train, X_test_nonblack))
#print X, X.shape
mean = np.mean(X,axis=0)
std = np.std(X,axis=0)
for d in tqdm(range(len(X_train))):
X_train[d] = (X_train[d] - mean) / std
for d in tqdm(range(len(X_test))):
X_test[d] = (X_test[d] - mean) / std
#Make once fully black vectors fully black again
X_test = X_test*mask
return X_train, X_test
示例9: make_tqdm_iterator
def make_tqdm_iterator(**kwargs):
options = {
"file": sys.stdout,
"leave": True
}
options.update(kwargs)
if session_type() == 'kernel':
# from IPython import display
# capture_stderr = StringIO()
# with RedirectStdStreams(stderr=capture_stderr):
# try:
# iterator = tqdm_notebook(**options)
# except:
# failed = True
# else:
# failed = False
# err_out = capture_stderr.getvalue()
# capture_stderr.close()
# if failed or err_out.lower().find("widget javascript not detected") > -1:
# display.clear_output(wait=True)
# iterator = tqdm(**options)
iterator = tqdm(**options)
else:
iterator = tqdm(**options)
return iterator
示例10: scan_dir
def scan_dir(path, dir_json):
# Preprocess the total files count
for root, dirs, files in tqdm(os.walk(path)):
for name in files:
path = os.path.join(root, name)
if os.path.getsize(path) > (25*1024*1024):
ext = os.path.splitext(name)[1]
if ext in EXT:
movie_name.append(name)
with tqdm(total=len(movie_name), leave=True, unit='B',
unit_scale=True) as pbar:
for name in movie_name:
data = get_movie_info(name)
pbar.update()
if data is not None and data['Response'] == 'True':
for key, val in data.items():
if val == "N/A":
data[key] = "-" # Should N/A be replaced with `-`?
movies.append(data)
else:
if data is not None:
movie_not_found.append(name)
with open(dir_json, "w") as out:
json.dump(movies, out, indent=2)
示例11: compare_assemblies
def compare_assemblies(assemblies, chunk_size = 2000, identity_threshold = 0.40):
"""
compares a set of assemblies:
assemblies is a dictionary with names of the assemblies as keys and fasta-files of the assemblies as values
"""
similarities = {}
print "make blast dbs"
for subject_name, subject in tqdm(assemblies.iteritems()):
blast_db_cmd = ["makeblastdb" ,"-in", subject, "-dbtype", "nucl", "-out", subject]
with open("/dev/null") as null:
blastdb_return = call(blast_db_cmd, stdout=null)
print "Run the hell out of it"
for scaff_name, scaff in tqdm(assemblies.iteritems()):
similarities[scaff_name] = {}
chopped_up_query = "tmp.fasta"
nb_chunks = len(cut_up_fasta(scaff, chopped_up_query, chunk_size))
for subject_name, subject in assemblies.iteritems():
nics = find_NICs(chopped_up_query, subject, identity_threshold, blast_db = False)
# print scaff_name, "vs", subject_name
similarities[scaff_name][subject_name] = len(nics.keys())/nb_chunks
os.remove(chopped_up_query)
print "clean up"
for subject_name, subject in tqdm(assemblies.iteritems()):
blast_db_files = [subject + ".nhr", subject + ".nin", subject + ".nsq"]
for f in blast_db_files:
os.remove(f)
similars = DataFrame.from_dict(similarities)
return similars
示例12: run
def run():
batch_size = 4000
print 'reading image hashes from image_hashes.csv...',
t0 = time()
global df_hashes
df_hashes = pd.read_csv('image_hashes.csv')
df_hashes.set_index('image_id', inplace=1)
print 'took %0.5fs' % (time() - t0)
pool = avito_utils.PoolWrapper(processes=4)
print 'processing train data...'
t0 = time()
df = pd.read_csv('../input/ItemPairs_train.csv')
delete_file_if_exists('features_imagehash_train.csv')
for batch_no, batch in tqdm(list(prepare_batches(df, batch_size))):
features = process_batch(batch, pool)
append_to_csv(features, 'features_imagehash_train.csv')
print 'processing train data took %0.5fs' % (time() - t0)
print 'processinig test data...'
t0 = time()
df = pd.read_csv('../input/ItemPairs_test.csv')
delete_file_if_exists('features_imagehash_test.csv')
for batch_no, batch in tqdm(list(prepare_batches(df, batch_size))):
features = process_batch(batch, pool)
append_to_csv(features, 'features_imagehash_test.csv')
print 'processing test data took %0.5fs' % (time() - t0)
pool.close()
示例13: run
def run(*args):
"""Reset the in_stock Card property. It was set to True by default, it
should be False. So each card that was bought once or added from
an inventory should be to True.
"""
yes_answers = ["y", "Y", "o", "O", ""]
go_all_cards = raw_input("Go with all cards ? [Y/n]")
go_inventories = raw_input("Go with cards applied from inventories ? [Y/n]")
if go_all_cards in yes_answers:
print("Setting all cards to not in stock...")
for card in tqdm(Card.objects.all()):
card.in_stock = False
card.save()
if go_inventories in yes_answers:
print("Registering cards applied from inventories...")
for inv in tqdm(Inventory.objects.filter(applied=True)):
print("Going with inv {}".format(inv.name))
for card_set in inv.inventorycopies_set.all():
card_set.card.in_stock = True
card_set.card.save()
print("All done.")
示例14: download_url
def download_url(url, root, filename, md5):
from six.moves import urllib
root = os.path.expanduser(root)
fpath = os.path.join(root, filename)
try:
os.makedirs(root)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# downloads file
if os.path.isfile(fpath) and check_integrity(fpath, md5):
print('Using downloaded and verified file: ' + fpath)
else:
try:
print('Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater(tqdm(unit='B', unit_scale=True))
)
except:
if url[:5] == 'https':
url = url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater(tqdm(unit='B', unit_scale=True))
)
示例15: preprocess_simple_predict
def preprocess_simple_predict():
df = pd.read_csv('data/data_full.csv')
df = df[df.is_fake==0]
res_df = df.ID.values
df_target = df[df.target > 0].drop('ID,is_train,is_fake'.split(','), axis=1)
target = df_target.target.values
data = df_target.drop(['target',], axis=1).values.astype(int)
val_sum = {}
for i, dat in tqdm(enumerate(data)):
for d in dat:
if d <= 0:
continue
if d not in val_sum:
val_sum[d] = [0, 0]
val_sum[d][0] += target[i]
val_sum[d][1] += 1
df['simple_predict'] = 0
for i, row in tqdm(df.drop('ID,is_train,is_fake,target'.split(','), axis=1).iterrows()):
summ = 0
cnt = 0.000001
for val in row:
if val not in val_sum or val_sum[val][1] < 10:
continue
summ += val_sum[val][0]
cnt += val_sum[val][1]
df.loc[i, 'simple_predict'] = summ / cnt
df[['ID', 'simple_predict']].to_csv('data/feat_simple_predict.csv', index=False)