当前位置: 首页>>代码示例>>Python>>正文


Python torch.ones函数代码示例

本文整理汇总了Python中torch.ones函数的典型用法代码示例。如果您正苦于以下问题:Python ones函数的具体用法?Python ones怎么用?Python ones使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了ones函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test2

def test2():
    x = torch.ones(1, 2)
    x = Variable(x)
    y = torch.ones(1, 2)

    z = x + 0.5
    print(x.data)
开发者ID:gonglixue,项目名称:PRML_Python,代码行数:7,代码来源:test.py

示例2: test_hmc_conjugate_gaussian

def test_hmc_conjugate_gaussian(fixture,
                                num_samples,
                                warmup_steps,
                                hmc_params,
                                expected_means,
                                expected_precs,
                                mean_tol,
                                std_tol):
    pyro.get_param_store().clear()
    hmc_kernel = HMC(fixture.model, **hmc_params)
    mcmc_run = MCMC(hmc_kernel, num_samples, warmup_steps).run(fixture.data)
    for i in range(1, fixture.chain_len + 1):
        param_name = 'loc_' + str(i)
        marginal = EmpiricalMarginal(mcmc_run, sites=param_name)
        latent_loc = marginal.mean
        latent_std = marginal.variance.sqrt()
        expected_mean = torch.ones(fixture.dim) * expected_means[i - 1]
        expected_std = 1 / torch.sqrt(torch.ones(fixture.dim) * expected_precs[i - 1])

        # Actual vs expected posterior means for the latents
        logger.info('Posterior mean (actual) - {}'.format(param_name))
        logger.info(latent_loc)
        logger.info('Posterior mean (expected) - {}'.format(param_name))
        logger.info(expected_mean)
        assert_equal(rmse(latent_loc, expected_mean).item(), 0.0, prec=mean_tol)

        # Actual vs expected posterior precisions for the latents
        logger.info('Posterior std (actual) - {}'.format(param_name))
        logger.info(latent_std)
        logger.info('Posterior std (expected) - {}'.format(param_name))
        logger.info(expected_std)
        assert_equal(rmse(latent_std, expected_std).item(), 0.0, prec=std_tol)
开发者ID:lewisKit,项目名称:pyro,代码行数:32,代码来源:test_hmc.py

示例3: __init__

    def __init__(self, hidden_size, num_inputs, action_space):
        super(Policy, self).__init__()
        self.action_space = action_space
        num_outputs = action_space.shape[0]

        self.bn0 = nn.BatchNorm1d(num_inputs)
        self.bn0.weight.data.fill_(1)
        self.bn0.bias.data.fill_(0)

        self.linear1 = nn.Linear(num_inputs, hidden_size)
        self.bn1 = nn.BatchNorm1d(hidden_size)
        self.bn1.weight.data.fill_(1)
        self.bn1.bias.data.fill_(0)

        self.linear2 = nn.Linear(hidden_size, hidden_size)
        self.bn2 = nn.BatchNorm1d(hidden_size)
        self.bn2.weight.data.fill_(1)
        self.bn2.bias.data.fill_(0)

        self.V = nn.Linear(hidden_size, 1)
        self.V.weight.data.mul_(0.1)
        self.V.bias.data.mul_(0.1)

        self.mu = nn.Linear(hidden_size, num_outputs)
        self.mu.weight.data.mul_(0.1)
        self.mu.bias.data.mul_(0.1)

        self.L = nn.Linear(hidden_size, num_outputs ** 2)
        self.L.weight.data.mul_(0.1)
        self.L.bias.data.mul_(0.1)

        self.tril_mask = Variable(torch.tril(torch.ones(
            num_outputs, num_outputs), diagonal=-1).unsqueeze(0))
        self.diag_mask = Variable(torch.diag(torch.diag(
            torch.ones(num_outputs, num_outputs))).unsqueeze(0))
开发者ID:lenvdv,项目名称:pytorch-ddpg-naf,代码行数:35,代码来源:naf.py

示例4: guide

        def guide():
            mu_q = pyro.param("mu_q", Variable(self.analytic_mu_n.data + 0.094 * torch.ones(2),
                                               requires_grad=True))
            log_sig_q = pyro.param("log_sig_q", Variable(
                                   self.analytic_log_sig_n.data - 0.11 * torch.ones(2), requires_grad=True))
            sig_q = torch.exp(log_sig_q)
            trivial_baseline = pyro.module("mu_baseline", pt_mu_baseline, tags="baseline")
            baseline_value = trivial_baseline(ng_ones(1))
            mu_latent = pyro.sample("mu_latent",
                                    dist.Normal(mu_q, sig_q, reparameterized=False),
                                    baseline=dict(baseline_value=baseline_value))

            def obs_inner(i, _i, _x):
                for k in range(n_superfluous_top + n_superfluous_bottom):
                    z_baseline = pyro.module("z_baseline_%d_%d" % (i, k),
                                             pt_superfluous_baselines[3 * k + i], tags="baseline")
                    baseline_value = z_baseline(mu_latent.detach()).unsqueeze(-1)
                    mean_i = pyro.param("mean_%d_%d" % (i, k),
                                        Variable(0.5 * torch.ones(4 - i, 1), requires_grad=True))
                    pyro.sample("z_%d_%d" % (i, k),
                                dist.Normal(mean_i, ng_ones(4 - i, 1), reparameterized=False),
                                baseline=dict(baseline_value=baseline_value))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                              obs_inner(i, _i, _x), batch_size=4 - i)

            pyro.map_data("map_obs_outer", [self.data_tensor[0:4, :], self.data_tensor[4:7, :],
                                            self.data_tensor[7:9, :]],
                          lambda i, x: obs_outer(i, x), batch_size=3)

            return mu_latent
开发者ID:Magica-Chen,项目名称:pyro,代码行数:32,代码来源:test_tracegraph_elbo.py

示例5: forward

    def forward(self, input_features, adj):
        #x = self.conv1(input_features, adj)
        #x = self.bn1(x)
        #x = self.act(x)
        #x = self.conv2(x, adj)
        #x = self.bn2(x)

        # pool over all nodes 
        #graph_h = self.pool_graph(x)
        graph_h = input_features.view(-1, self.max_num_nodes * self.max_num_nodes)
        # vae
        h_decode, z_mu, z_lsgms = self.vae(graph_h)
        out = F.sigmoid(h_decode)
        out_tensor = out.cpu().data
        recon_adj_lower = self.recover_adj_lower(out_tensor)
        recon_adj_tensor = self.recover_full_adj_from_lower(recon_adj_lower)

        # set matching features be degree
        out_features = torch.sum(recon_adj_tensor, 1)

        adj_data = adj.cpu().data[0]
        adj_features = torch.sum(adj_data, 1)

        S = self.edge_similarity_matrix(adj_data, recon_adj_tensor, adj_features, out_features,
                self.deg_feature_similarity)

        # initialization strategies
        init_corr = 1 / self.max_num_nodes
        init_assignment = torch.ones(self.max_num_nodes, self.max_num_nodes) * init_corr
        #init_assignment = torch.FloatTensor(4, 4)
        #init.uniform(init_assignment)
        assignment = self.mpm(init_assignment, S)
        #print('Assignment: ', assignment)

        # matching
        # use negative of the assignment score since the alg finds min cost flow
        row_ind, col_ind = scipy.optimize.linear_sum_assignment(-assignment.numpy())
        print('row: ', row_ind)
        print('col: ', col_ind)
        # order row index according to col index
        #adj_permuted = self.permute_adj(adj_data, row_ind, col_ind)
        adj_permuted = adj_data
        adj_vectorized = adj_permuted[torch.triu(torch.ones(self.max_num_nodes,self.max_num_nodes) )== 1].squeeze_()
        adj_vectorized_var = Variable(adj_vectorized).cuda()

        #print(adj)
        #print('permuted: ', adj_permuted)
        #print('recon: ', recon_adj_tensor)
        adj_recon_loss = self.adj_recon_loss(adj_vectorized_var, out[0])
        print('recon: ', adj_recon_loss)
        print(adj_vectorized_var)
        print(out[0])

        loss_kl = -0.5 * torch.sum(1 + z_lsgms - z_mu.pow(2) - z_lsgms.exp())
        loss_kl /= self.max_num_nodes * self.max_num_nodes # normalize
        print('kl: ', loss_kl)

        loss = adj_recon_loss + loss_kl

        return loss
开发者ID:taeyen,项目名称:graph-generation,代码行数:60,代码来源:model.py

示例6: test_elmo_lstm_cell_completes_forward_pass

    def test_elmo_lstm_cell_completes_forward_pass(self):
        input_tensor = torch.autograd.Variable(torch.rand(4, 5, 3))
        input_tensor[1, 4:, :] = 0.
        input_tensor[2, 2:, :] = 0.
        input_tensor[3, 1:, :] = 0.

        initial_hidden_state = Variable(torch.ones([1, 4, 5]))
        initial_memory_state = Variable(torch.ones([1, 4, 7]))

        lstm = LstmCellWithProjection(input_size=3,
                                      hidden_size=5,
                                      cell_size=7,
                                      memory_cell_clip_value=2,
                                      state_projection_clip_value=1)
        output_sequence, lstm_state = lstm(input_tensor, [5, 4, 2, 1],
                                           (initial_hidden_state, initial_memory_state))
        numpy.testing.assert_array_equal(output_sequence.data[1, 4:, :].numpy(), 0.0)
        numpy.testing.assert_array_equal(output_sequence.data[2, 2:, :].numpy(), 0.0)
        numpy.testing.assert_array_equal(output_sequence.data[3, 1:, :].numpy(), 0.0)

        # Test the state clipping.
        numpy.testing.assert_array_less(output_sequence.data.numpy(), 1.0)
        numpy.testing.assert_array_less(-output_sequence.data.numpy(), 1.0)

        # LSTM state should be (num_layers, batch_size, hidden_size)
        assert list(lstm_state[0].size()) == [1, 4, 5]
        # LSTM memory cell should be (num_layers, batch_size, cell_size)
        assert list((lstm_state[1].size())) == [1, 4, 7]

        # Test the cell clipping.
        numpy.testing.assert_array_less(lstm_state[0].data.numpy(), 2.0)
        numpy.testing.assert_array_less(-lstm_state[0].data.numpy(), 2.0)
开发者ID:Jordan-Sauchuk,项目名称:allennlp,代码行数:32,代码来源:lstm_cell_with_projection_test.py

示例7: model

 def model():
     latent = named.Object("latent")
     latent.list = named.List()
     loc = latent.list.add().loc.param_(torch.zeros(1))
     latent.dict = named.Dict()
     foo = latent.dict["foo"].foo.sample_(dist.Normal(loc, torch.ones(1)))
     latent.object.bar.sample_(dist.Normal(loc, torch.ones(1)), obs=foo)
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:test_named.py

示例8: vector_grad

def vector_grad():
    x = Variable(torch.ones(2)*3, requires_grad=True)
    y = Variable(torch.ones(2)*4, requires_grad=True)
    z = x.pow(2) + 3*y.pow(2)
    z.backward(torch.ones(2))
    print(x.grad)
    print(y.grad)
开发者ID:gonglixue,项目名称:PRML_Python,代码行数:7,代码来源:gradient.py

示例9: bernoulli_normal_model

def bernoulli_normal_model():
    bern_0 = pyro.sample('bern_0', dist.Bernoulli(torch.zeros(1) * 1e-2))
    loc = torch.ones(1) if bern_0.item() else -torch.ones(1)
    normal_0 = torch.ones(1)
    pyro.sample('normal_0', dist.Normal(loc, torch.ones(1) * 1e-2),
                obs=normal_0)
    return [bern_0, normal_0]
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:test_properties.py

示例10: test_growing_dataset

 def test_growing_dataset(self):
     dataset = [torch.ones(4) for _ in range(4)]
     dataloader_seq = DataLoader(dataset, shuffle=False)
     dataloader_shuffle = DataLoader(dataset, shuffle=True)
     dataset.append(torch.ones(4))
     self.assertEqual(len(dataloader_seq), 5)
     self.assertEqual(len(dataloader_shuffle), 5)
开发者ID:RichieMay,项目名称:pytorch,代码行数:7,代码来源:test_dataloader.py

示例11: heads_tails

def heads_tails(n_ent, train_data, valid_data=None, test_data=None):
    train_src, train_rel, train_dst = train_data
    if valid_data:
        valid_src, valid_rel, valid_dst = valid_data
    else:
        valid_src = valid_rel = valid_dst = []
    if test_data:
        test_src, test_rel, test_dst = test_data
    else:
        test_src = test_rel = test_dst = []
    all_src = train_src + valid_src + test_src
    all_rel = train_rel + valid_rel + test_rel
    all_dst = train_dst + valid_dst + test_dst
    heads = defaultdict(lambda: set())
    tails = defaultdict(lambda: set())
    for s, r, t in zip(all_src, all_rel, all_dst):
        tails[(s, r)].add(t)
        heads[(t, r)].add(s)
    heads_sp = {}
    tails_sp = {}
    for k in tails.keys():
        tails_sp[k] = torch.sparse.FloatTensor(torch.LongTensor([list(tails[k])]),
                                               torch.ones(len(tails[k])), torch.Size([n_ent]))
    for k in heads.keys():
        heads_sp[k] = torch.sparse.FloatTensor(torch.LongTensor([list(heads[k])]),
                                               torch.ones(len(heads[k])), torch.Size([n_ent]))
    return heads_sp, tails_sp
开发者ID:cai-lw,项目名称:KBGAN,代码行数:27,代码来源:data_utils.py

示例12: test_cpu

    def test_cpu(self):
        create_extension(
            name='test_extensions.cpulib',
            headers=[test_dir + '/ffi/src/cpu/lib.h'],
            sources=[
                test_dir + '/ffi/src/cpu/lib1.c',
                test_dir + '/ffi/src/cpu/lib2.c',
            ],
            verbose=False,
        ).build()
        from test_extensions import cpulib
        tensor = torch.ones(2, 2).float()

        cpulib.good_func(tensor, 2, 1.5)
        self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5)

        new_tensor = cpulib.new_tensor(4)
        self.assertEqual(new_tensor, torch.ones(4, 4) * 4)

        f = cpulib.int_to_float(5)
        self.assertIs(type(f), float)

        self.assertRaises(TypeError,
                          lambda: cpulib.good_func(tensor.double(), 2, 1.5))
        self.assertRaises(torch.FatalError,
                          lambda: cpulib.bad_func(tensor, 2, 1.5))
开发者ID:xiongyw,项目名称:pytorch,代码行数:26,代码来源:test_utils.py

示例13: test_python_ir

    def test_python_ir(self):
        x = Variable(torch.Tensor([0.4]), requires_grad=True)
        y = Variable(torch.Tensor([0.7]), requires_grad=True)

        def doit(x, y):
            return torch.sigmoid(torch.tanh(x * (x + y)))

        traced, _ = torch.jit.trace(doit, (x, y))
        g = torch._C._jit_get_graph(traced)
        g2 = torch._C.Graph()
        g_to_g2 = {}
        for node in g.inputs():
            g_to_g2[node] = g2.addInput()
        for node in g.nodes():
            n_ = g2.createClone(node, lambda x: g_to_g2[x])
            g2.appendNode(n_)
            for o, no in zip(node.outputs(), n_.outputs()):
                g_to_g2[o] = no

        for node in g.outputs():
            g2.registerOutput(g_to_g2[node])

        t_node = g2.create("TensorTest").t_("a", torch.ones([2, 2]))
        assert(t_node.attributeNames() == ["a"])
        g2.appendNode(t_node)
        assert(torch.equal(torch.ones([2, 2]), t_node.t("a")))
        self.assertExpected(str(g2))
开发者ID:Northrend,项目名称:pytorch,代码行数:27,代码来源:test_jit.py

示例14: test_regex_matches_are_initialized_correctly

    def test_regex_matches_are_initialized_correctly(self):
        class Net(torch.nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.linear_1_with_funky_name = torch.nn.Linear(5, 10)
                self.linear_2 = torch.nn.Linear(10, 5)
                self.conv = torch.nn.Conv1d(5, 5, 5)

            def forward(self, inputs):  # pylint: disable=arguments-differ
                pass

        # pyhocon does funny things if there's a . in a key.  This test makes sure that we
        # handle these kinds of regexes correctly.
        json_params = """{"initializer": [
        ["conv", {"type": "constant", "val": 5}],
        ["funky_na.*bi", {"type": "constant", "val": 7}]
        ]}
        """
        params = Params(pyhocon.ConfigFactory.parse_string(json_params))
        initializers = InitializerApplicator.from_params(params['initializer'])
        model = Net()
        initializers(model)

        for parameter in model.conv.parameters():
            assert torch.equal(parameter.data, torch.ones(parameter.size()) * 5)

        parameter = model.linear_1_with_funky_name.bias
        assert torch.equal(parameter.data, torch.ones(parameter.size()) * 7)
开发者ID:Jordan-Sauchuk,项目名称:allennlp,代码行数:28,代码来源:initializers_test.py

示例15: test_Concat

    def test_Concat(self):
        input = torch.randn(4, 2)
        num_modules = random.randint(2, 5)
        linears = [nn.Linear(2, 5) for i in range(num_modules)]

        m = nn.Concat(0)
        for l in linears:
            m.add(l)
            l.zeroGradParameters()
            l.weight.fill_(1)
            l.bias.fill_(0)

        # Check that these don't raise errors
        m.__repr__()
        str(m)

        output = m.forward(input)
        output2 = input.sum(1, True).expand(4, 5).repeat(num_modules, 1)
        self.assertEqual(output2, output)

        gradInput = m.backward(input, torch.ones(output2.size()))
        gradInput2 = torch.ones(4, 2).fill_(num_modules * 5)
        self.assertEqual(gradInput, gradInput2)

        gradWeight = input.sum(0, keepdim=True).expand(5, 2)
        for l in linears:
            self.assertEqual(gradWeight, l.gradWeight)
开发者ID:bhuWenDongchao,项目名称:pytorch,代码行数:27,代码来源:test_legacy_nn.py


注:本文中的torch.ones函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。