本文整理汇总了Python中toolz.get_in函数的典型用法代码示例。如果您正苦于以下问题:Python get_in函数的具体用法?Python get_in怎么用?Python get_in使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_in函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _normalize_cwl_inputs
def _normalize_cwl_inputs(items):
"""Extract variation and validation data from CWL input list of batched samples.
"""
with_validate = {}
vrn_files = []
ready_items = []
batch_samples = []
for data in (cwlutils.normalize_missing(utils.to_single_data(d)) for d in items):
batch_samples.append(dd.get_sample_name(data))
if tz.get_in(["config", "algorithm", "validate"], data):
with_validate[_checksum(tz.get_in(["config", "algorithm", "validate"], data))] = data
if data.get("vrn_file"):
vrn_files.append(data["vrn_file"])
ready_items.append(data)
if len(with_validate) == 0:
data = _pick_lead_item(ready_items)
data["batch_samples"] = batch_samples
return data
else:
assert len(with_validate) == 1, len(with_validate)
assert len(set(vrn_files)) == 1, set(vrn_files)
data = _pick_lead_item(with_validate.values())
data["batch_samples"] = batch_samples
data["vrn_file"] = vrn_files[0]
return data
示例2: remove_highdepth_regions
def remove_highdepth_regions(in_file, items):
"""Remove high depth regions from a BED file for analyzing a set of calls.
Tries to avoid spurious errors and slow run times in collapsed repeat regions.
Also adds ENCODE blacklist regions which capture additional collapsed repeats
around centromeres.
"""
from bcbio.variation import bedutils
highdepth_beds = filter(lambda x: x is not None,
list(set([tz.get_in(["config", "algorithm", "highdepth_regions"], x) for x in items])))
encode_bed = tz.get_in(["genome_resources", "variation", "encode_blacklist"], items[0])
if encode_bed and os.path.exists(encode_bed):
highdepth_beds.append(encode_bed)
out_file = "%s-glimit%s" % utils.splitext_plus(in_file)
if not utils.file_uptodate(out_file, in_file):
with file_transaction(items[0], out_file) as tx_out_file:
with bedtools_tmpdir(items[0]):
all_file = "%s-all.bed" % utils.splitext_plus(tx_out_file)[0]
if len(highdepth_beds) > 0:
with open(all_file, "w") as out_handle:
for line in fileinput.input(highdepth_beds):
parts = line.split("\t")
out_handle.write("\t".join(parts[:4]).rstrip() + "\n")
if utils.file_exists(all_file):
to_remove = bedutils.sort_merge(all_file, items[0])
cmd = "bedtools subtract -nonamecheck -a {in_file} -b {to_remove} > {tx_out_file}"
do.run(cmd.format(**locals()), "Remove high depth regions")
else:
utils.symlink_plus(in_file, out_file)
return out_file
示例3: _ready_gzip_fastq
def _ready_gzip_fastq(in_files, data):
"""Check if we have gzipped fastq and don't need format conversion or splitting.
"""
all_gzipped = all([not x or x.endswith(".gz") for x in in_files])
needs_convert = tz.get_in(["config", "algorithm", "quality_format"], data, "").lower() == "illumina"
do_splitting = tz.get_in(["config", "algorithm", "align_split_size"], data) is not False
return all_gzipped and not needs_convert and not do_splitting and not objectstore.is_remote(in_files[0])
示例4: _shared_gatk_call_prep
def _shared_gatk_call_prep(align_bams, items, ref_file, dbsnp, region, out_file):
"""Shared preparation work for GATK variant calling.
"""
data = items[0]
config = data["config"]
broad_runner = broad.runner_from_path("picard", config)
broad_runner.run_fn("picard_index_ref", ref_file)
for x in align_bams:
bam.index(x, config)
params = ["-R", ref_file]
coverage_depth_min = tz.get_in(["algorithm", "coverage_depth_min"], config)
if coverage_depth_min and coverage_depth_min < 4:
confidence = "4.0"
params += ["--standard_min_confidence_threshold_for_calling", confidence,
"--standard_min_confidence_threshold_for_emitting", confidence]
for a in annotation.get_gatk_annotations(config):
params += ["--annotation", a]
for x in align_bams:
params += ["-I", x]
if dbsnp:
params += ["--dbsnp", dbsnp]
variant_regions = tz.get_in(["algorithm", "variant_regions"], config)
region = subset_variant_regions(variant_regions, region, out_file, items)
if region:
params += ["-L", bamprep.region_to_gatk(region), "--interval_set_rule", "INTERSECTION"]
broad_runner = broad.runner_from_config(config)
return broad_runner, params
示例5: prepare_exclude_file
def prepare_exclude_file(items, base_file, chrom=None):
"""Prepare a BED file for exclusion, incorporating variant regions and chromosome.
Excludes locally repetitive regions (if `remove_lcr` is set) and
centromere regions, both of which contribute to long run times and
false positive structural variant calls.
"""
out_file = "%s-exclude.bed" % utils.splitext_plus(base_file)[0]
all_vrs = _get_variant_regions(items)
ready_region = (shared.subset_variant_regions(tz.first(all_vrs), chrom, base_file, items)
if len(all_vrs) > 0 else chrom)
with shared.bedtools_tmpdir(items[0]):
# Get a bedtool for the full region if no variant regions
if ready_region == chrom:
want_bedtool = callable.get_ref_bedtool(tz.get_in(["reference", "fasta", "base"], items[0]),
items[0]["config"], chrom)
lcr_bed = shared.get_lcr_bed(items)
if lcr_bed:
want_bedtool = want_bedtool.subtract(pybedtools.BedTool(lcr_bed))
else:
want_bedtool = pybedtools.BedTool(ready_region).saveas()
sv_exclude_bed = _get_sv_exclude_file(items)
if sv_exclude_bed and len(want_bedtool) > 0:
want_bedtool = want_bedtool.subtract(sv_exclude_bed).saveas()
if not utils.file_exists(out_file) and not utils.file_exists(out_file + ".gz"):
with file_transaction(out_file) as tx_out_file:
full_bedtool = callable.get_ref_bedtool(tz.get_in(["reference", "fasta", "base"], items[0]),
items[0]["config"])
if len(want_bedtool) > 0:
full_bedtool.subtract(want_bedtool).saveas(tx_out_file)
else:
full_bedtool.saveas(tx_out_file)
return out_file
示例6: batch_for_variantcall
def batch_for_variantcall(samples):
"""Prepare a set of samples for parallel variant calling.
CWL input target that groups samples into batches and variant callers
for parallel processing.
"""
convert_to_list = set(["config__algorithm__tools_on", "config__algorithm__tools_off"])
to_process, extras = _dup_samples_by_variantcaller(samples, require_bam=False)
batch_groups = collections.defaultdict(list)
to_process = [utils.to_single_data(x) for x in to_process]
all_keys = set([])
for data in to_process:
all_keys.update(set(data["cwl_keys"]))
for data in to_process:
for raw_key in sorted(list(all_keys)):
key = raw_key.split("__")
if tz.get_in(key, data) is None:
data = tz.update_in(data, key, lambda x: None)
data["cwl_keys"].append(raw_key)
if raw_key in convert_to_list:
val = tz.get_in(key, data)
if not val: val = []
elif not isinstance(val, (list, tuple)): val = [val]
data = tz.update_in(data, key, lambda x: val)
vc = get_variantcaller(data, require_bam=False)
batches = dd.get_batches(data) or dd.get_sample_name(data)
if not isinstance(batches, (list, tuple)):
batches = [batches]
for b in batches:
batch_groups[(b, vc)].append(utils.deepish_copy(data))
return list(batch_groups.values()) + extras
示例7: _extra_vars
def _extra_vars(args, cluster_config):
return {"encrypted_mount": "/encrypted",
"nfs_server": nfs_server,
"nfs_clients": ",".join(nfs_clients),
"login_user": tz.get_in(["nodes", "frontend", "login"], cluster_config),
"encrypted_device": tz.get_in(["nodes", "frontend", "encrypted_volume_device"],
cluster_config, "/dev/xvdf")}
示例8: _cram_to_fastq_regions
def _cram_to_fastq_regions(regions, cram_file, dirs, data):
"""Convert CRAM files to fastq, potentially within sub regions.
Returns multiple fastq files that can be merged back together.
"""
base_name = utils.splitext_plus(os.path.basename(cram_file))[0]
work_dir = utils.safe_makedir(os.path.join(dirs["work"], "align_prep",
"%s-parts" % base_name))
ref_file = tz.get_in(["reference", "fasta", "base"], data)
resources = config_utils.get_resources("bamtofastq", data["config"])
cores = tz.get_in(["config", "algorithm", "num_cores"], data, 1)
max_mem = int(resources.get("memory", "1073741824")) * cores # 1Gb/core default
fnames = []
is_paired = False
for region in regions:
rext = "-%s" % region.replace(":", "_").replace("-", "_") if region else "full"
out_s, out_p1, out_p2 = [os.path.join(work_dir, "%s%s-%s.fq.gz" %
(base_name, rext, fext))
for fext in ["s1", "p1", "p2"]]
if not utils.file_exists(out_p1):
with file_transaction(out_s, out_p1, out_p2) as (tx_out_s, tx_out_p1, tx_out_p2):
sortprefix = "%s-sort" % utils.splitext_plus(tx_out_s)[0]
cmd = ("bamtofastq filename={cram_file} inputformat=cram T={sortprefix} "
"gz=1 collate=1 colsbs={max_mem} "
"F={tx_out_p1} F2={tx_out_p2} S={tx_out_s} O=/dev/null O2=/dev/null "
"reference={ref_file}")
if region:
cmd += " ranges='{region}'"
do.run(cmd.format(**locals()), "CRAM to fastq %s" % region if region else "")
if is_paired or not _is_gzip_empty(out_p1):
fnames.append((out_p1, out_p2))
is_paired = True
else:
fnames.append((out_s,))
return fnames
示例9: align_to_sort_bam
def align_to_sort_bam(fastq1, fastq2, aligner, data):
"""Align to the named genome build, returning a sorted BAM file.
"""
names = data["rgnames"]
align_dir_parts = [data["dirs"]["work"], "align", names["sample"]]
if data.get("disambiguate"):
align_dir_parts.append(data["disambiguate"]["genome_build"])
align_dir = utils.safe_makedir(apply(os.path.join, align_dir_parts))
aligner_indexes = os.path.commonprefix(tz.get_in(("reference", aligner, "indexes"), data))
if aligner_indexes.endswith("."):
aligner_indexes = aligner_indexes[:-1]
ref_file = tz.get_in(("reference", "fasta", "base"), data)
if fastq1.endswith(".bam"):
data = _align_from_bam(fastq1, aligner, aligner_indexes, ref_file,
names, align_dir, data)
else:
data = _align_from_fastq(fastq1, fastq2, aligner, aligner_indexes, ref_file,
names, align_dir, data)
if data["work_bam"] and utils.file_exists(data["work_bam"]):
bam.index(data["work_bam"], data["config"])
for extra in ["-sr", "-disc"]:
extra_bam = utils.append_stem(data['work_bam'], extra)
if utils.file_exists(extra_bam):
bam.index(extra_bam, data["config"])
return data
示例10: get_recipes
def get_recipes(path=None):
"""Get all the available conda recipes.
Returns a namedtuple which contains the following keys:
:name: the name of the recipe
:path: the path for the package
:version: the version of the recipe
:build: the number of builds for the current version
"""
path = path or CONFIG["abspath"]
recipes = []
for recipe in RECIPE_ORDER:
recipe_path = os.path.join(path, recipe, "meta.yaml")
if not os.path.exists(recipe_path):
print("[x] Missing meta.yaml for {recipe}.".format(recipe=recipe))
continue
output_path, _ = execute(["conda", "build", recipe, "--output", "--numpy", CONFIG["numpy"]], cwd=path)
with open(recipe_path, "r") as recipe_handle:
config = yaml.safe_load(recipe_handle)
recipes.append(
RECIPE(
name=recipe,
path=output_path.strip(),
version=toolz.get_in(["package", "version"], config),
build=toolz.get_in(["build", "number"], config, 0),
)
)
return recipes
示例11: _bgzip_from_cram
def _bgzip_from_cram(cram_file, dirs, data):
"""Create bgzipped fastq files from an input CRAM file in regions of interest.
Returns a list with a single file, for single end CRAM files, or two
files for paired end input.
"""
region_file = (tz.get_in(["config", "algorithm", "variant_regions"], data)
if tz.get_in(["config", "algorithm", "coverage_interval"], data) in ["regional", "exome"]
else None)
if region_file:
regions = ["%s:%s-%s" % tuple(r) for r in pybedtools.BedTool(region_file)]
else:
regions = [None]
work_dir = utils.safe_makedir(os.path.join(dirs["work"], "align_prep"))
out_s, out_p1, out_p2 = [os.path.join(work_dir, "%s-%s.fq.gz" %
(utils.splitext_plus(os.path.basename(cram_file))[0], fext))
for fext in ["s1", "p1", "p2"]]
if not utils.file_exists(out_s) and not utils.file_exists(out_p1):
cram.index(cram_file)
fastqs = _cram_to_fastq_regions(regions, cram_file, dirs, data)
if len(fastqs[0]) == 1:
with file_transaction(out_s) as tx_out_file:
_merge_and_bgzip([xs[0] for xs in fastqs], tx_out_file, out_s)
else:
for i, out_file in enumerate([out_p1, out_p2]):
ext = "/%s" % (i + 1)
with file_transaction(out_file) as tx_out_file:
_merge_and_bgzip([xs[i] for xs in fastqs], tx_out_file, out_file, ext)
if utils.file_exists(out_p1):
return [out_p1, out_p2]
else:
assert utils.file_exists(out_s)
return [out_s]
示例12: _run_cnvkit_shared
def _run_cnvkit_shared(data, test_bams, background_bams, access_file, work_dir,
background_name=None):
"""Shared functionality to run CNVkit.
"""
ref_file = dd.get_ref_file(data)
raw_work_dir = os.path.join(work_dir, "raw")
out_base = os.path.splitext(os.path.basename(test_bams[0]))[0]
background_cnn = "%s_background.cnn" % (background_name if background_name else "flat")
if not utils.file_exists(os.path.join(raw_work_dir, "%s.cnr" % out_base)):
with tx_tmpdir(data, work_dir) as tx_work_dir:
target_bed = tz.get_in(["config", "algorithm", "variant_regions"], data)
cmd = ["batch"] + test_bams + ["-n"] + background_bams + ["-f", ref_file] + \
["--targets", target_bed, "--access", access_file,
"-d", raw_work_dir, "--split",
"-p", str(tz.get_in(["config", "algorithm", "num_cores"], data, 1)),
"--output-reference", os.path.join(raw_work_dir, background_cnn)]
at_avg, at_min, t_avg = _get_antitarget_size(access_file, target_bed)
if at_avg:
cmd += ["--antitarget-avg-size", str(at_avg), "--antitarget-min-size", str(at_min),
"--target-avg-size", str(t_avg)]
args = cnvlib_cmd.parse_args(cmd)
args.func(args)
shutil.move(tx_work_dir, raw_work_dir)
return {"cnr": os.path.join(raw_work_dir, "%s.cnr" % out_base),
"cns": os.path.join(raw_work_dir, "%s.cns" % out_base),
"back_cnn": os.path.join(raw_work_dir, background_cnn)}
示例13: _meta_to_version
def _meta_to_version(in_file):
"""Extract version information from meta description file.
"""
with open(in_file) as in_handle:
config = yaml.safe_load(in_handle)
return (tz.get_in(["package", "version"], config),
tz.get_in(["build", "number"], config, 0))
示例14: get_analysis_intervals
def get_analysis_intervals(data, vrn_file, base_dir):
"""Retrieve analysis regions for the current variant calling pipeline.
"""
from bcbio.bam import callable
if vrn_file and vcfutils.is_gvcf_file(vrn_file):
callable_bed = _callable_from_gvcf(data, vrn_file, base_dir)
if callable_bed:
return callable_bed
if data.get("ensemble_bed"):
return data["ensemble_bed"]
elif dd.get_sample_callable(data):
return dd.get_sample_callable(data)
elif data.get("align_bam"):
return callable.sample_callable_bed(data["align_bam"], dd.get_ref_file(data), data)[0]
elif data.get("work_bam"):
return callable.sample_callable_bed(data["work_bam"], dd.get_ref_file(data), data)[0]
elif data.get("work_bam_callable"):
data = utils.deepish_copy(data)
data["work_bam"] = data.pop("work_bam_callable")
return callable.sample_callable_bed(data["work_bam"], dd.get_ref_file(data), data)[0]
elif tz.get_in(["config", "algorithm", "callable_regions"], data):
return tz.get_in(["config", "algorithm", "callable_regions"], data)
elif tz.get_in(["config", "algorithm", "variant_regions"], data):
return tz.get_in(["config", "algorithm", "variant_regions"], data)
示例15: calculate_sv_coverage
def calculate_sv_coverage(data):
"""Calculate coverage within bins for downstream CNV calling.
Creates corrected cnr files with log2 ratios and depths.
"""
from bcbio.variation import coverage
from bcbio.structural import annotate, cnvkit
data = utils.to_single_data(data)
if not cnvkit.use_general_sv_bins(data):
return [[data]]
work_dir = utils.safe_makedir(os.path.join(dd.get_work_dir(data), "structural",
dd.get_sample_name(data), "bins"))
out_target_file = os.path.join(work_dir, "%s-target-coverage.cnn" % dd.get_sample_name(data))
out_anti_file = os.path.join(work_dir, "%s-antitarget-coverage.cnn" % dd.get_sample_name(data))
if ((not utils.file_exists(out_target_file) or not utils.file_exists(out_anti_file))
and (dd.get_align_bam(data) or dd.get_work_bam(data))):
# mosdepth
target_cov = coverage.run_mosdepth(data, "target", tz.get_in(["regions", "bins", "target"], data))
anti_cov = coverage.run_mosdepth(data, "antitarget", tz.get_in(["regions", "bins", "antitarget"], data))
target_cov_genes = annotate.add_genes(target_cov.regions, data, max_distance=0)
anti_cov_genes = annotate.add_genes(anti_cov.regions, data, max_distance=0)
out_target_file = _add_log2_depth(target_cov_genes, out_target_file, data)
out_anti_file = _add_log2_depth(anti_cov_genes, out_anti_file, data)
# TODO: Correct for GC bias
if os.path.exists(out_target_file):
data["depth"]["bins"] = {"target": out_target_file, "antitarget": out_anti_file}
return [[data]]