本文整理汇总了Python中tools.plotting.Histogram_properties.mc_errors_label方法的典型用法代码示例。如果您正苦于以下问题:Python Histogram_properties.mc_errors_label方法的具体用法?Python Histogram_properties.mc_errors_label怎么用?Python Histogram_properties.mc_errors_label使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tools.plotting.Histogram_properties
的用法示例。
在下文中一共展示了Histogram_properties.mc_errors_label方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_ttbarReco_plot
# 需要导入模块: from tools.plotting import Histogram_properties [as 别名]
# 或者: from tools.plotting.Histogram_properties import mc_errors_label [as 别名]
#.........这里部分代码省略.........
selection = 'SolutionCategory == 1'
histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 2'
histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory == 3'
histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
selection = 'SolutionCategory > 3'
histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )
# Split histograms up into signal/control (?)
signal_region_hists = {}
inclusive_control_region_hists = {}
for sample in histograms.keys():
signal_region_hists[sample] = histograms[sample][signal_region_tree]
if use_qcd_data_region:
inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]
prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )
qcd_from_data = signal_region_hists['QCD']
# Which histograms to draw, and properties
histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
signal_region_hists['V+Jets'],
signal_region_hists['SingleTop'],
histogramsNoSolution['TTJet'][signal_region_tree],
histogramsNotSL['TTJet'][signal_region_tree],
histogramsNotReco['TTJet'][signal_region_tree],
histogramsWrong['TTJet'][signal_region_tree],
histogramsCorrect['TTJet'][signal_region_tree]
]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top',
samples_latex['TTJet'] + ' - no solution',
samples_latex['TTJet'] + ' - not SL',
samples_latex['TTJet'] + ' - not reconstructible',
samples_latex['TTJet'] + ' - wrong reco',
samples_latex['TTJet'] + ' - correct',
]
histogram_colors = ['black', 'yellow', 'green', 'magenta',
'black',
'burlywood',
'chartreuse',
'blue',
'red'
]
histogram_properties = Histogram_properties()
histogram_properties.name = name_prefix + b_tag_bin
if category != 'central':
histogram_properties.name += '_' + category
histogram_properties.title = title
histogram_properties.x_axis_title = x_axis_title
histogram_properties.y_axis_title = y_axis_title
histogram_properties.x_limits = x_limits
histogram_properties.y_limits = y_limits
histogram_properties.y_max_scale = y_max_scale
histogram_properties.xerr = None
# workaround for rootpy issue #638
histogram_properties.emptybins = True
if b_tag_bin:
histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
else:
histogram_properties.additional_text = channel_latex[channel]
histogram_properties.legend_location = legend_location
histogram_properties.cms_logo_location = cms_logo_location
histogram_properties.preliminary = preliminary
histogram_properties.set_log_y = log_y
histogram_properties.legend_color = legend_color
if ratio_y_limits:
histogram_properties.ratio_y_limits = ratio_y_limits
if normalise_to_fit:
histogram_properties.mc_error = get_normalisation_error( normalisation )
histogram_properties.mc_errors_label = 'fit uncertainty'
else:
histogram_properties.mc_error = mc_uncertainty
histogram_properties.mc_errors_label = 'MC unc.'
# Actually draw histograms
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = False, normalise = normalise,
)
histogram_properties.name += '_with_ratio'
loc = histogram_properties.legend_location
# adjust legend location as it is relative to canvas!
histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties, save_folder = output_folder,
show_ratio = True, normalise = normalise,
)
示例2: plot_fit_variable
# 需要导入模块: from tools.plotting import Histogram_properties [as 别名]
# 或者: from tools.plotting.Histogram_properties import mc_errors_label [as 别名]
def plot_fit_variable( histograms, fit_variable, variable, bin_range,
fit_variable_distribution, qcd_fit_variable_distribution,
title, save_path ):
global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
mc_uncertainty = 0.10
prepare_histograms( histograms, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )
histogram_properties = Histogram_properties()
histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
# qcd_from_data = histograms['data'][qcd_fit_variable_distribution].Clone()
# clean against other processes
histograms_for_cleaning = {'data':histograms['data'][qcd_fit_variable_distribution],
'V+Jets':histograms['V+Jets'][qcd_fit_variable_distribution],
'SingleTop':histograms['SingleTop'][qcd_fit_variable_distribution],
'TTJet':histograms['TTJet'][qcd_fit_variable_distribution]}
qcd_from_data = clean_control_region( histograms_for_cleaning, subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
histograms_to_draw = [histograms['data'][qcd_fit_variable_distribution],
histograms['QCD'][qcd_fit_variable_distribution],
histograms['V+Jets'][qcd_fit_variable_distribution],
histograms['SingleTop'][qcd_fit_variable_distribution],
histograms['TTJet'][qcd_fit_variable_distribution]]
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions' % b_tag_bin_ctl
make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties,
save_folder = save_path + '/qcd/',
show_ratio = False,
save_as = save_as,
)
histograms_to_draw = [qcd_from_data,
histograms['QCD'][qcd_fit_variable_distribution],
]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions_subtracted' % b_tag_bin_ctl
make_data_mc_comparison_plot( histograms_to_draw,
histogram_lables = ['data', 'QCD'],
histogram_colors = ['black', 'yellow'],
histogram_properties = histogram_properties,
save_folder = save_path + '/qcd/',
show_ratio = False,
save_as = save_as,
)
# scale QCD to predicted
n_qcd_predicted_mc = histograms['QCD'][fit_variable_distribution].Integral()
n_qcd_fit_variable_distribution = qcd_from_data.Integral()
if not n_qcd_fit_variable_distribution == 0:
qcd_from_data.Scale( 1.0 / n_qcd_fit_variable_distribution * n_qcd_predicted_mc )
histograms_to_draw = [histograms['data'][fit_variable_distribution], qcd_from_data,
histograms['V+Jets'][fit_variable_distribution],
histograms['SingleTop'][fit_variable_distribution], histograms['TTJet'][fit_variable_distribution]]
histogram_properties.title = title + ', ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin
make_data_mc_comparison_plot( histograms_to_draw,
histogram_lables,
histogram_colors,
histogram_properties,
save_folder = save_path,
show_ratio = False,
save_as = save_as,
)
histogram_properties.mc_error = mc_uncertainty
histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin + '_templates'
# change histogram order for better visibility
histograms_to_draw = [histograms['TTJet'][fit_variable_distribution] + histograms['SingleTop'][fit_variable_distribution],
histograms['TTJet'][fit_variable_distribution],
histograms['SingleTop'][fit_variable_distribution],
histograms['V+Jets'][fit_variable_distribution],
qcd_from_data]
histogram_lables = ['QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet'], samples_latex['TTJet'] + ' + ' + 'Single-Top']
histogram_lables.reverse()
# change QCD color to orange for better visibility
histogram_colors = ['orange', 'green', 'magenta', 'red', 'black']
histogram_colors.reverse()
make_shape_comparison_plot( shapes = histograms_to_draw,
names = histogram_lables,
colours = histogram_colors,
histogram_properties = histogram_properties,
fill_area = False,
alpha = 1,
save_folder = save_path,
save_as = save_as,
)
示例3: str
# 需要导入模块: from tools.plotting import Histogram_properties [as 别名]
# 或者: from tools.plotting.Histogram_properties import mc_errors_label [as 别名]
'TTJet': path_to_files + 'TTJet_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
'data' : path_to_files + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon),
'WJets': path_to_files + 'WJetsToLNu_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
'ZJets': path_to_files + 'DYJetsToLL_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
'QCD': path_to_files + 'QCD_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
'SingleTop': path_to_files + 'SingleTop_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
}
b_tag_bin = '0btag'
control_region = 'topReconstruction/backgroundShape/mttbar_3jets_conversions_withMETAndAsymJets_' + b_tag_bin
histograms = get_histograms_from_files([control_region], histogram_files)
prepare_histograms(histograms, rebin=50)
histograms_to_draw = [histograms['data'][control_region], histograms['QCD'][control_region],
histograms['ZJets'][control_region], histograms['WJets'][control_region],
histograms['SingleTop'][control_region], histograms['TTJet'][control_region]]
histogram_lables = ['data', 'QCD', samples_latex['ZJets'], samples_latex['WJets'], 'Single-Top', samples_latex['TTJet']]
histogram_colors = ['black', 'yellow', 'blue', 'green', 'magenta', 'red']
histogram_properties = Histogram_properties()
histogram_properties.name = 'Mttbar'
histogram_properties.title = 'CMS Preliminary, $\mathcal{L}$ = 5.1 fb$^{-1}$ at $\sqrt{s}$ = 7 TeV \n e+jets, $\geq$4 jets, ' + b_tag_bins_latex[b_tag_bin]
histogram_properties.x_axis_title = '$m_{\mathrm{t}\\bar{\mathrm{t}}}$ [GeV]'
histogram_properties.y_axis_title = 'Events/(50 GeV)'
histogram_properties.x_limits=[300,1800]
histogram_properties.mc_error = 0.15
histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors,
histogram_properties)