本文整理汇总了Python中tools.ROOT_utils.set_root_defaults函数的典型用法代码示例。如果您正苦于以下问题:Python set_root_defaults函数的具体用法?Python set_root_defaults怎么用?Python set_root_defaults使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了set_root_defaults函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
set_root_defaults()
options, _ = parse_arguments()
variable = 'ST'
config_7TeV = XSectionConfig(7)
config_8TeV = XSectionConfig(8)
path_to_JSON_7TeV = options.path + '/7TeV/' + variable + '/'
path_to_JSON_8TeV = options.path + '/8TeV/' + variable + '/'
# we need the generators
# and the central samples + errors
results_7TeV, _ = read_xsection_measurement_results( path_to_JSON_7TeV,
variable,
bin_edges_full,
category = 'central',
channel = 'combined',
k_values = {
'combined': config_7TeV.k_values_combined}
)
results_8TeV, _ = read_xsection_measurement_results( path_to_JSON_8TeV,
variable,
bin_edges_full,
category = 'central',
channel = 'combined',
k_values = {
'combined': config_8TeV.k_values_combined}
)
plot_results(results_7TeV, results_8TeV, variable)
示例2: main
def main():
set_root_defaults()
# prevent directory ownership of ROOT histograms (python does the garbage
# collection)
parser = OptionParser()
parser.add_option("-n", "--n_toy_mc",
dest="n_toy_mc", default=300,
help="number of toy MC to create", type=int)
parser.add_option("-o", "--output",
dest="output_folder", default='data/toy_mc/',
help="output folder for toy MC")
# parser.add_option("-v", "--variable", dest="variable", default='MET',
# help="set the variable to analyse (MET, HT, ST, MT, WPT)")
parser.add_option("-m", "--metType", dest="metType", default='type1',
help="set MET type for analysis of MET, ST or MT")
parser.add_option("-c", "--centre-of-mass-energy", dest="CoM", default=13,
help="set the centre of mass energy for analysis. Default = 13 [TeV]", type=int)
parser.add_option('-V', '--verbose', dest="verbose", action="store_true",
help="Print the event number, reco and gen variable value")
(options, _) = parser.parse_args()
measurement_config = XSectionConfig(options.CoM)
# variable = options.variable
met_type = measurement_config.translate_options[options.metType]
create_toy_mc(input_file=measurement_config.unfolding_central,
output_folder=options.output_folder,
# variable=variable,
n_toy=options.n_toy_mc,
centre_of_mass=options.CoM,
ttbar_xsection=measurement_config.ttbar_xsection,
met_type=met_type)
示例3: main
def main():
set_root_defaults()
options, _ = parse_arguments()
variable = "ST"
config_7TeV = XSectionConfig(7)
config_8TeV = XSectionConfig(8)
path_to_JSON_7TeV = options.path + "/7TeV/" + variable + "/"
path_to_JSON_8TeV = options.path + "/8TeV/" + variable + "/"
# we need the generators
# and the central samples + errors
results_7TeV, _ = read_xsection_measurement_results(
path_to_JSON_7TeV,
variable,
bin_edges,
category="central",
channel="combined",
k_values={"combined": config_7TeV.k_values_combined},
)
results_8TeV, _ = read_xsection_measurement_results(
path_to_JSON_8TeV,
variable,
bin_edges,
category="central",
channel="combined",
k_values={"combined": config_8TeV.k_values_combined},
)
plot_results(results_7TeV, results_8TeV, variable)
示例4: main
def main():
'''
Main function for this script
'''
set_root_defaults(msg_ignore_level=3001)
parser = OptionParser()
parser.add_option("-o", "--output",
dest="output_folder", default='data/pull_data/',
help="output folder for pull data files")
parser.add_option("-n", "--n_input_mc", type=int,
dest="n_input_mc", default=100,
help="number of toy MC used for the tests")
parser.add_option("-k", "--k_value", type=int,
dest="k_value", default=3,
help="k-value for SVD unfolding")
parser.add_option("--tau", type='float',
dest="tau_value", default=-1.,
help="tau-value for SVD unfolding")
parser.add_option("-m", "--method", type='string',
dest="method", default='RooUnfoldSvd',
help="unfolding method")
parser.add_option("-f", "--file", type='string',
dest="file", default='data/toy_mc/unfolding_toy_mc.root',
help="file with toy MC")
parser.add_option("-v", "--variable", dest="variable", default='MET',
help="set the variable to analyse (MET, HT, ST, MT, WPT)")
parser.add_option("-s", "--centre-of-mass-energy", dest="CoM", default=13,
help='''set the centre of mass energy for analysis.
Default = 8 [TeV]''', type=int)
parser.add_option("-c", "--channel", type='string',
dest="channel", default='combined',
help="channel to be analysed: electron|muon|combined")
parser.add_option("--offset_toy_mc", type=int,
dest="offset_toy_mc", default=0,
help="offset of the toy MC used to response matrix")
parser.add_option("--offset_toy_data", type=int,
dest="offset_toy_data", default=0,
help="offset of the toy MC used as data for unfolding")
(options, _) = parser.parse_args()
centre_of_mass = options.CoM
make_folder_if_not_exists(options.output_folder)
# set the number of toy MC for error calculation
k_value = options.k_value
tau_value = options.tau_value
use_n_toy = options.n_input_mc
offset_toy_mc = options.offset_toy_mc
offset_toy_data = options.offset_toy_data
method = options.method
variable = options.variable
create_unfolding_pull_data(options.file, method, options.channel,
centre_of_mass, variable, use_n_toy, use_n_toy,
options.output_folder, offset_toy_mc,
offset_toy_data, k_value, tau_value)
示例5: main
def main():
'''
Main function for this script
'''
set_root_defaults(msg_ignore_level=3001)
parser = OptionParser()
parser.add_option("-o", "--output",
dest="output_folder", default='data/pull_data/',
help="output folder for pull data files")
parser.add_option("-n", "--n_input_mc", type=int,
dest="n_input_mc", default=100,
help="number of toy MC used for the tests")
parser.add_option("--tau", type='float',
dest="tau_value", default=-1.,
help="tau-value for SVD unfolding")
parser.add_option("-m", "--method", type='string',
dest="method", default='TUnfold',
help="unfolding method")
parser.add_option("-f", "--file", type='string',
dest="file", default='data/toy_mc/unfolding_toy_mc.root',
help="file with toy MC")
parser.add_option("-v", "--variable", dest="variable", default='MET',
help="set the variable to analyse (defined in config/variable_binning.py)")
parser.add_option("--com", "--centre-of-mass-energy", dest="CoM", default=13,
help='''set the centre of mass energy for analysis.
Default = 8 [TeV]''', type=int)
parser.add_option("-c", "--channel", type='string',
dest="channel", default='combined',
help="channel to be analysed: electron|muon|combined")
parser.add_option("-s", type='string',
dest="sample", default='madgraph',
help="channel to be analysed: electron|muon|combined")
(options, _) = parser.parse_args()
centre_of_mass = options.CoM
measurement_config = XSectionConfig(centre_of_mass)
make_folder_if_not_exists(options.output_folder)
use_n_toy = options.n_input_mc
method = options.method
variable = options.variable
sample = options.sample
tau_value = options.tau_value
create_unfolding_pull_data(options.file, method, options.channel,
centre_of_mass, variable,
sample,
measurement_config.unfolding_central,
use_n_toy,
options.output_folder,
tau_value)
示例6: run
def run(self):
'''
Run the workload
'''
import src.unfolding_tests.create_unfolding_pull_data as pull
from tools.ROOT_utils import set_root_defaults
set_root_defaults(msg_ignore_level=3001)
pulls_file_name = pull.create_unfolding_pull_data(self.input_file_name,
self.method,
self.channel_to_run,
self.centre_of_mass,
self.variable_to_run,
self.sample_to_run,
self.response,
self.n_toy_data,
self.output_folder,
self.tau_value_to_run
)
示例7: create_unfolding_pull_data
def create_unfolding_pull_data(input_file_name, method, channel,
centre_of_mass, variable,
sample,
responseFile,
n_toy_data,
output_folder,
tau_value,
run_matrix=None):
'''
Sets up all variables for check_multiple_data_multiple_unfolding
'''
set_root_defaults(msg_ignore_level=3001)
timer = Timer()
input_file = File(input_file_name, 'read')
folder_template = '{path}/{centre_of_mass}TeV/{variable}/{sample}/'
msg_template = 'Producing unfolding pull data for {variable},'
msg_template += ' tau-value {value}'
inputs = {
'path': output_folder,
'centre_of_mass': centre_of_mass,
'variable': variable,
'sample': sample,
'value': round(tau_value,4),
}
h_response = get_response_histogram(responseFile, variable, channel)
output_folder = folder_template.format(**inputs)
make_folder_if_not_exists(output_folder)
print(msg_template.format(**inputs))
print('Output folder: {0}'.format(output_folder))
print ('Response here :',h_response)
output_file_name = check_multiple_data_multiple_unfolding(
input_file, method, channel, variable,
h_response,
n_toy_data,
output_folder,
tau_value,
)
print('Runtime', timer.elapsed_time())
return output_file_name
示例8: main
def main():
set_root_defaults()
# prevent directory ownership of ROOT histograms (python does the garbage
# collection)
parser = OptionParser()
parser.add_option("-n", "--n_toy_mc",
dest="n_toy_mc", default=300,
help="number of toy MC to create", type=int)
parser.add_option("-o", "--output",
dest="output_folder", default='data/toy_mc/',
help="output folder for toy MC")
parser.add_option("-s", dest="sample", default='madgraph',
help='set underlying sample for creating the toy MC. Possible options : madgraph, powhegPythia, amcatnlo. Default is madgraph')
parser.add_option("-c", "--centre-of-mass-energy", dest="CoM", default=13,
help="set the centre of mass energy for analysis. Default = 13 [TeV]", type=int)
parser.add_option('-V', '--verbose', dest="verbose", action="store_true",
help="Print the event number, reco and gen variable value")
(options, _) = parser.parse_args()
measurement_config = XSectionConfig(options.CoM)
input_file = None
if options.sample == 'madgraph':
input_file = measurement_config.unfolding_madgraphMLM
elif options.sample == 'powhegPythia':
input_file = measurement_config.unfolding_central
elif options.sample == 'amcatnlo':
input_file = measurement_config.unfolding_amcatnlo
create_toy_mc(input_file=input_file,
sample=options.sample,
output_folder=options.output_folder,
# variable=variable,
n_toy=options.n_toy_mc,
centre_of_mass=options.CoM,
ttbar_xsection=measurement_config.ttbar_xsection
)
示例9: write_data_to_JSON
normalised_xsection['massup'] = massup_normalised_xsection
file_template = '{path_to_JSON}/{category}/normalised_xsection_{channel}_{method}.txt'
filename = file_template.format(
path_to_JSON = path_to_JSON,
category = category,
channel = channel,
method = method,
)
if normalise_to_one:
filename = filename.replace( 'normalised_xsection', 'normalised_to_one_xsection' )
write_data_to_JSON( normalised_xsection, filename )
if __name__ == '__main__':
set_root_defaults( msg_ignore_level = 3001 )
# setup
parser = OptionParser()
parser.add_option( "-p", "--path", dest = "path", default = 'data/M3_angle_bl/',
help = "set path to JSON files" )
parser.add_option( "-v", "--variable", dest = "variable", default = 'MET',
help = "set the variable to analyse (MET, HT, ST, MT)" )
parser.add_option( "-b", "--bjetbin", dest = "bjetbin", default = '2m',
help = "set b-jet multiplicity for analysis. Options: exclusive: 0-3, inclusive (N or more): 0m, 1m, 2m, 3m, 4m" )
parser.add_option( "-m", "--metType", dest = "metType", default = 'type1',
help = "set MET type for analysis of MET, ST or MT" )
parser.add_option( "-f", "--load_fakes", dest = "load_fakes", action = "store_true",
help = "Load fakes histogram and perform manual fake subtraction in TSVDUnfold" )
parser.add_option( "-u", "--unfolding_method", dest = "unfolding_method", default = 'RooUnfoldSvd',
help = "Unfolding method: RooUnfoldSvd (default), TSVDUnfold, RooUnfoldTUnfold, RooUnfoldInvert, RooUnfoldBinByBin, RooUnfoldBayes" )
parser.add_option( "-e", "--error_treatment", type = 'int',
示例10: get_binning
plot_data_total.Sumw2()
plot_ttbar_passed.Sumw2()
plot_ttbar_total.Sumw2()
bin_edge_array = get_binning(trigger_under_study)
n_bins = len(bin_edge_array) - 1
plot_data_passed = asrootpy(plot_data_passed.Rebin(n_bins, 'truth', bin_edge_array))
plot_data_total = asrootpy(plot_data_total.Rebin(n_bins, 'truth', bin_edge_array))
plot_ttbar_passed = asrootpy(plot_ttbar_passed.Rebin(n_bins, 'truth', bin_edge_array))
plot_ttbar_total = asrootpy(plot_ttbar_total.Rebin(n_bins, 'truth', bin_edge_array))
return plot_data_passed, plot_data_total, plot_ttbar_passed, plot_ttbar_total
if __name__ == '__main__':
set_root_defaults()
CMS.title['fontsize'] = 40
CMS.x_axis_title['fontsize'] = 50
CMS.y_axis_title['fontsize'] = 50
CMS.axis_label_major['labelsize'] = 40
CMS.axis_label_minor['labelsize'] = 40
CMS.legend_properties['size'] = 40
output_formats = ['png', 'pdf']
output_folder = '/storage/TopQuarkGroup/results/plots/Trigger/'
triggers = [
'HLT_Ele25_CaloIdVT_TrkIdT_TriCentralJet30',
'HLT_Ele25_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_TriCentralJet30',
'HLT_Ele25_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_TriCentralPFJet30',
示例11: generate_toy
def generate_toy(n_toy, n_input_mc, config, output_folder, start_at=0, split=1):
from progressbar import Percentage, Bar, ProgressBar, ETA
set_root_defaults()
genWeight = '( EventWeight * {0})'.format(config.luminosity_scale)
file_name = config.ttbar_category_templates_trees['central']
make_folder_if_not_exists(output_folder)
outfile = get_output_file_name(
output_folder, n_toy, start_at, n_input_mc, config.centre_of_mass_energy)
variable_bins = bin_edges.copy()
widgets = ['Progress: ', Percentage(), ' ', Bar(),
' ', ETA()]
with root_open(file_name, 'read') as f_in, root_open(outfile, 'recreate') as f_out:
tree = f_in.Get("TTbar_plus_X_analysis/Unfolding/Unfolding")
n_events = tree.GetEntries()
print("Number of entries in tree : ", n_events)
for channel in ['electron', 'muon']:
print('Channel :', channel)
gen_selection, gen_selection_vis = '', ''
if channel is 'muon':
gen_selection = '( isSemiLeptonicMuon == 1 )'
gen_selection_vis = '( isSemiLeptonicMuon == 1 && passesGenEventSelection )'
else:
gen_selection = '( isSemiLeptonicElectron == 1 )'
gen_selection_vis = '( isSemiLeptonicElectron == 1 && passesGenEventSelection )'
selection = '( {0} ) * ( {1} )'.format(genWeight, gen_selection)
selection_vis = '( {0} ) * ( {1} )'.format(genWeight,
gen_selection_vis)
weighted_entries = get_weighted_entries(tree, selection)
weighted_entries_vis = get_weighted_entries(tree, selection_vis)
pbar = ProgressBar(widgets=widgets, maxval=n_input_mc).start()
toy_mc_sets = []
for variable in ['MET', 'HT', 'ST', 'WPT']: # variable_bins:
toy_mc = ToySet(f_out, variable, channel, n_toy)
toy_mc_sets.append(toy_mc)
count = 0
for event in tree:
# generate 300 weights for each event
mc_weights = get_mc_weight(weighted_entries, n_toy)
mc_weights_vis = get_mc_weight(weighted_entries_vis, n_toy)
if count >= n_input_mc:
break
count += 1
if count < start_at:
continue
# weight = event.EventWeight * config.luminosity_scale
# # rescale to N input events
# weight *= n_events / n_input_mc / split
weight = 1
for toy_mc in toy_mc_sets:
toy_mc.fill(event, weight, mc_weights, mc_weights_vis)
if count % 1000 == 1:
pbar.update(count)
print('Processed {0} events'.format(count))
pbar.finish()
for toy_mc in toy_mc_sets:
toy_mc.write()
print('Toy MC was saved to file:', outfile)
示例12: main
def main():
"Main Function"
set_root_defaults()
parser = OptionParser("Script to check progress of CRAB jobs in creating nTuples. Run as: python check_CRAB_jobs.py -p projectFolder -n numberOfJobs >&check.log &")
parser.add_option("-p", "--projectFolder", dest="projectFolder", help="specify project")
parser.add_option("-n", "--numberOfJobs", dest="numberOfJobs",
help="specify project")
(options, _) = parser.parse_args()
#make sure the project option has been specified
if not options.projectFolder:
parser.error('Please enter a project folder as the -p option: /gpfs_phys/storm/cms/user/...')
#normalise the projectFolder filepath and add a "/" at the end
projectFolder = os.path.normpath(options.projectFolder) + os.sep
#list the items in the CRAB output folder on the Bristol Storage Element.
storageElementList=glob.glob(projectFolder + "*.root")
if storageElementList:
pass
else:
print "Location Error: Specified project folder does not exist on the Bristol Storage Element, signifying that the CRAB job has probably not started running yet or you forgot to include the full path /gpfs_storm/cms/user/..."
sys.exit()
#The following section has been commented out because if it is the first time this script is being run in a session, a grid password will be needed which will cause the script
#to not be able to finish. Since the only purpose of this following CRAB command is to obtain the number of jobs, for the time being the number of jobs has been entered as an option to
#the script which should be manually entered by the user.
#get the status of the crab jobs and extract the number of output files expected on the Bristol Storage Element.
# projectFolder = options.projectFolder.split("/")[6]
# status = commands.getstatusoutput("crab -status -c " + projectFolder)
# statusFormatted = status[1].split("\n")
# for line in statusFormatted:
# if "crab:" in line and "Total Jobs" in line:
# words = line.split()
# numberOfJobs = int(words[1])
#Now, check that all job root files are present in Bristol Storage Element folder:
missingOrBrokenTemp = []
missingOrBroken = []
goodFilesTemp = []
goodFiles = []
presentJobList = []
duplicatesToDelete = []
#make list of all the job numbers which should be present.
jobList = range(1,int(options.numberOfJobs)+1)
#try opening all files in Bristol Storage Element folder and add to missing list if they cannot be opened.
for f in storageElementList:
#make list of all jobs numbers in the Bristol Storage Element folder
jobNumber = int((re.split('[\W+,_]',f))[-4])
presentJobList.append(jobNumber)
#check if files are corrupt or not
try:
rootFile = File(f)
rootFile.Close()
except:
print "Adding Job Number", jobNumber, "to missingOrBroken list because file is corrupted."
missingOrBrokenTemp.append(jobNumber)
else:
goodFilesTemp.append(jobNumber)
#now add any absent files to the missing list:
for job in jobList:
if job not in presentJobList:
print "Adding Job Number", job, "to missingOrBroken list because it doesn't exist on the Storage Element."
missingOrBrokenTemp.append(job)
#Remove any job numbers from missingOrBroken which appear in both goodFiles and missingOrBroken lists
for job in missingOrBrokenTemp:
if job not in goodFilesTemp:
missingOrBroken.append(job)
else:
print "Removing", job, "from missingOrBroken list because there is at least one duplicate good output file."
#Remove any job numbers from goodFiles which appear more than once in goodFiles
for job in goodFilesTemp:
if job not in goodFiles:
goodFiles.append(job)
else:
duplicatesToDelete.append(job)
print "\n The following", len(goodFiles), "good output files were found in the Bristol Storage Element folder:"
print str(goodFiles).replace(" ", "")
print "\n The following", len(duplicatesToDelete), "job numbers have multiple good files on the Bristol Storage Element folder which can be deleted:"
print str(duplicatesToDelete).replace(" ", "")
print "\n The following", len(missingOrBroken), "job numbers could not be found in the Bristol Storage Element folder:"
print str(missingOrBroken).replace(" ", "")
示例13: main
def main():
set_root_defaults()
# prevent directory ownership of ROOT histograms (python does the garbage collection)
TH1F.AddDirectory( False )
parser = OptionParser()
parser.add_option( "-n", "--n_toy_mc",
dest = "n_toy_mc", default = 300,
help = "number of toy MC to create", type = int )
parser.add_option( "-o", "--output",
dest = "output_folder", default = 'data/toy_mc/',
help = "output folder for toy MC" )
parser.add_option( "-v", "--variable", dest = "variable", default = 'MET',
help = "set the variable to analyse (MET, HT, ST, MT, WPT)" )
parser.add_option( "-m", "--metType", dest = "metType", default = 'type1',
help = "set MET type for analysis of MET, ST or MT" )
parser.add_option( "-c", "--centre-of-mass-energy", dest = "CoM", default = 8,
help = "set the centre of mass energy for analysis. Default = 8 [TeV]", type = int )
parser.add_option( '-V', '--verbose', dest = "verbose", action = "store_true",
help = "Print the event number, reco and gen variable value" )
( options, _ ) = parser.parse_args()
measurement_config = XSectionConfig( options.CoM )
centre_of_mass = options.CoM
ttbar_xsection = measurement_config.ttbar_xsection
variable = options.variable
met_type = measurement_config.translate_options[options.metType]
n_toy_mc = options.n_toy_mc
make_folder_if_not_exists( options.output_folder )
# get histograms
input_file_hists = File( measurement_config.unfolding_madgraph )
# define output file
out_file_template = '%s/toy_mc_%s_N_%d_%dTeV.root'
out_file_name = out_file_template % (options.output_folder, variable, n_toy_mc, centre_of_mass)
output = File( out_file_name, 'recreate' )
for channel in ['electron', 'muon']:
# first get the weights
h_truth, h_measured, h_response, _ = get_unfold_histogram_tuple( input_file_hists,
variable,
channel,
met_type,
centre_of_mass,
ttbar_xsection,
load_fakes = False )
# create directories
directory = output.mkdir( channel )
mkdir = directory.mkdir
cd = directory.cd
cd()
# generate toy MC
for i in range( 1, n_toy_mc + 1 ):
mkdir( 'toy_%d' % i )
cd( 'toy_%d' % i )
# create histograms
# add tuples (truth, measured, response) of histograms
truth = generate_toy_MC_from_distribution(h_truth)
measured = generate_toy_MC_from_distribution(h_measured)
response = generate_toy_MC_from_2Ddistribution(h_response)
truth.SetName('truth')
measured.SetName('measured')
response.SetName('response')
truth.Write()
measured.Write()
response.Write()
output.Write()
output.Close()