本文整理汇总了Python中tomopy.normalize函数的典型用法代码示例。如果您正苦于以下问题:Python normalize函数的具体用法?Python normalize怎么用?Python normalize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normalize函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_panorama
def build_panorama(src_folder, file_grid, shift_grid, frame=0, method='max', method2=None, blend_options={}, blend_options2={},
blur=None, color_correction=False, margin=100):
t00 = time.time()
root = os.getcwd()
os.chdir(src_folder)
cam_size = g_shapes(file_grid[0, 0])
cam_size = cam_size[1:3]
img_size = shift_grid[-1, -1] + cam_size
buff = np.zeros([1, 1])
last_none = False
if method2 is None:
for (y, x), value in np.ndenumerate(file_grid):
if (value != None and frame < g_shapes(value)[0]):
prj, flt, drk = read_aps_32id_adaptive(value, proj=(frame, frame + 1))
prj = tomopy.normalize(prj, flt, drk)
prj = preprocess(prj, blur=blur)
t0 = time.time()
buff = blend(buff, np.squeeze(prj), shift_grid[y, x, :], method=method, color_correction=color_correction, **blend_options)
print('Rank: {:d}; Frame: {:d}; Pos: ({:d}, {:d}); Method: {:s}; Color Corr.:{:b}; Tile stitched in '
'{:.2f} s.'.format(rank, frame, y, x, method, color_correction, time.time()-t0))
if last_none:
buff[margin:, margin:-margin][np.isnan(buff[margin:, margin:-margin])] = 0
last_none = False
else:
last_none = True
else:
for y in range(file_grid.shape[0]):
temp_grid = file_grid[y:y+1, :]
temp_shift = np.copy(shift_grid[y:y+1, :, :])
offset = np.min(temp_shift[:, :, 0])
temp_shift[:, :, 0] = temp_shift[:, :, 0] - offset
row_buff = np.zeros([1, 1])
prj, flt, drk = read_aps_32id_adaptive(temp_grid[0, 0], proj=(frame, frame + 1))
prj = tomopy.normalize(prj, flt, drk)
prj = preprocess(prj, blur=blur)
row_buff, _ = arrange_image(row_buff, np.squeeze(prj), temp_shift[0, 0, :], order=1)
for x in range(1, temp_grid.shape[1]):
value = temp_grid[0, x]
if (value != None and frame < g_shapes(value)[0]):
prj, flt, drk = read_aps_32id_adaptive(value, proj=(frame, frame + 1))
prj = tomopy.normalize(prj, flt, drk)
prj = preprocess(prj, blur=blur)
t0 = time.time()
row_buff = blend(row_buff, np.squeeze(prj), temp_shift[0, x, :], method=method, color_correction=color_correction, **blend_options)
print('Rank: {:d}; Frame: {:d}; Pos: ({:d}, {:d}); Method: {:s}; Color Corr.:{:b}; Tile stitched in '
'{:.2f} s.'.format(rank, frame, y, x, method, color_correction, time.time() - t0))
if last_none:
row_buff[margin:, margin:-margin][np.isnan(row_buff[margin:, margin:-margin])] = 0
last_none = False
else:
last_none = True
t0 = time.time()
buff = blend(buff, row_buff, [offset, 0], method=method2, color_correction=False, **blend_options2)
print('Rank: {:d}; Frame: {:d}; Row: {:d}; Row stitched in {:.2f} s.'.format(rank, frame, y, time.time()-t0))
print('Rank: {:d}; Frame: {:d}; Panorama built in {:.2f} s.'.format(rank, frame, time.time()-t00))
os.chdir(root)
return buff
示例2: main
def main(arg):
parser = argparse.ArgumentParser()
parser.add_argument("top", help="top directory where the tiff images are located: /data/")
parser.add_argument("start", nargs='?', const=0, type=int, default=0, help="index of the first image: 10001 (default 0)")
args = parser.parse_args()
top = args.top
# Select the sinogram range to reconstruct.
start = 290
end = 294
print(top)
# Read the Australian Synchrotron Facility data
proj, flat, dark = dxchange.read_aps_5bm(top)
# proj, flat, dark = dxchange.read_aps_5bm(fname, sino=(start, end))
slider(proj)
# Set data collection angles as equally spaced between 0-180 degrees.
theta = tomopy.angles(proj.shape[0])
# Flat-field correction of raw data.
proj = tomopy.normalize(proj, flat, dark)
slider(proj)
示例3: reconstruct
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):
sample_detector_distance = 30 # Propagation distance of the wavefront in cm
detector_pixel_size_x = 1.17e-4 # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
monochromator_energy = 25.74 # Energy of incident wave in keV
alpha = 1e-02 # Phase retrieval coeff.
zinger_level = 1000 # Zinger level for projections
zinger_level_w = 1000 # Zinger level for white
miss_angles = [141,226]
# Read APS 32-BM raw data.
proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
print (theta)
# Manage the missing angles:
#proj_size = np.shape(proj)
#theta = np.linspace(0,180,proj_size[0])
proj = np.concatenate((proj[0:miss_angles[0],:,:], proj[miss_angles[1]+1:-1,:,:]), axis=0)
theta = np.concatenate((theta[0:miss_angles[0]], theta[miss_angles[1]+1:-1]))
# zinger_removal
#proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
#flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)
# Flat-field correction of raw data.
data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
# remove stripes
data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)
# phase retrieval
# data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)
print("Raw data: ", h5fname)
print("Center: ", rot_center)
data = tomopy.minus_log(data)
data = tomopy.remove_nan(data, val=0.0)
data = tomopy.remove_neg(data, val=0.00)
data[np.where(data == np.inf)] = 0.00
rot_center = rot_center/np.power(2, float(binning))
data = tomopy.downsample(data, level=binning)
data = tomopy.downsample(data, level=binning, axis=1)
# Reconstruct object.
if algorithm == 'sirtfbp':
rec = rec_sirtfbp(data, theta, rot_center)
else:
rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
print("Algorithm: ", algorithm)
# Mask each reconstructed slice with a circle.
##rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
return rec
示例4: rec_test
def rec_test(file_name, sino_start, sino_end, astra_method, extra_options, num_iter=1):
print '\n#### Processing '+ file_name
sino_start = sino_start + 200
sino_end = sino_start + 2
print "Test reconstruction of slice [%d]" % sino_start
# Read HDF5 file.
prj, flat, dark = tomopy.io.exchange.read_aps_32id(file_name, sino=(sino_start, sino_end))
# Manage the missing angles:
theta = tomopy.angles(prj.shape[0])
prj = np.concatenate((prj[0:miss_angles[0],:,:], prj[miss_angles[1]+1:-1,:,:]), axis=0)
theta = np.concatenate((theta[0:miss_angles[0]], theta[miss_angles[1]+1:-1]))
# normalize the prj
prj = tomopy.normalize(prj, flat, dark)
# remove ring artefacts
prjn = tomopy.remove_stripe_fw(prj)
# reconstruct
rec = tomopy.recon(prj[:,::reduce_amount,::reduce_amount], theta, center=float(best_center)/reduce_amount, algorithm=tomopy.astra, options={'proj_type':proj_type,'method':astra_method,'extra_options':extra_options,'num_iter':num_iter}, emission=False)
# Write data as stack of TIFs.
tomopy.io.writer.write_tiff_stack(rec, fname=output_name)
print "Slice saved as [%s_00000.tiff]" % output_name
示例5: rec_test
def rec_test(file_name, sino_start, sino_end):
print "\n#### Processing " + file_name
sino_start = sino_start + 200
sino_end = sino_start + 2
print "Test reconstruction of slice [%d]" % sino_start
# Read HDF5 file.
prj, flat, dark = tomopy.io.exchange.read_aps_32id(file_name, sino=(sino_start, sino_end))
# Manage the missing angles:
theta = tomopy.angles(prj.shape[0])
prj = np.concatenate((prj[0 : miss_angles[0], :, :], prj[miss_angles[1] + 1 : -1, :, :]), axis=0)
theta = np.concatenate((theta[0 : miss_angles[0]], theta[miss_angles[1] + 1 : -1]))
# normalize the prj
prj = tomopy.normalize(prj, flat, dark)
# reconstruct
rec = tomopy.recon(prj, theta, center=best_center, algorithm="gridrec", emission=False)
# Write data as stack of TIFs.
tomopy.io.writer.write_tiff_stack(rec, fname=output_name)
print "Slice saved as [%s_00000.tiff]" % output_name
# show the reconstructed slice
pl.gray()
pl.axis("off")
pl.imshow(rec[0])
示例6: rec_try
def rec_try(h5fname, nsino, rot_center, center_search_width, algorithm, binning):
zinger_level = 800 # Zinger level for projections
zinger_level_w = 1000 # Zinger level for white
data_shape = get_dx_dims(h5fname, 'data')
print(data_shape)
ssino = int(data_shape[1] * nsino)
center_range = (rot_center-center_search_width, rot_center+center_search_width, 0.5)
#print(sino,ssino, center_range)
#print(center_range[0], center_range[1], center_range[2])
# Select sinogram range to reconstruct
sino = None
start = ssino
end = start + 1
sino = (start, end)
# Read APS 32-BM raw data.
proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
# zinger_removal
proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)
# Flat-field correction of raw data.
data = tomopy.normalize(proj, flat, dark, cutoff=1.4)
# remove stripes
data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)
print("Raw data: ", h5fname)
print("Center: ", rot_center)
data = tomopy.minus_log(data)
stack = np.empty((len(np.arange(*center_range)), data_shape[0], data_shape[2]))
index = 0
for axis in np.arange(*center_range):
stack[index] = data[:, 0, :]
index = index + 1
# Reconstruct the same slice with a range of centers.
rec = tomopy.recon(stack, theta, center=np.arange(*center_range), sinogram_order=True, algorithm='gridrec', filter_name='parzen', nchunk=1)
# Mask each reconstructed slice with a circle.
rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
index = 0
# Save images to a temporary folder.
fname = os.path.dirname(h5fname) + '/' + 'try_rec/' + 'recon_' + os.path.splitext(os.path.basename(h5fname))[0]
for axis in np.arange(*center_range):
rfname = fname + '_' + str('{0:.2f}'.format(axis) + '.tiff')
dxchange.write_tiff(rec[index], fname=rfname, overwrite=True)
index = index + 1
print("Reconstructions: ", fname)
示例7: find_rotation_axis
def find_rotation_axis(h5fname, nsino):
data_size = get_dx_dims(h5fname, 'data')
ssino = int(data_size[1] * nsino)
# Select sinogram range to reconstruct
sino = None
start = ssino
end = start + 1
sino = (start, end)
# Read APS 32-BM raw data
proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
# Flat-field correction of raw data
data = tomopy.normalize(proj, flat, dark, cutoff=1.4)
# remove stripes
data = tomopy.remove_stripe_fw(data,level=5,wname='sym16',sigma=1,pad=True)
# find rotation center
rot_center = tomopy.find_center_vo(data)
return rot_center
示例8: main
def main():
#****************************************************************************
file_name = '/local/dataraid/databank/dataExchange/tmp/Australian_rank3.h5'
output_name = '/local/dataraid/databank/dataExchange/tmp/rec/Australian_rank3'
sino_start = 290
sino_end = 294
# Read HDF5 file.
exchange_rank = 3;
prj, flat, dark = tomopy.io.exchange.read_aps_32id(file_name, exchange_rank, sino=(sino_start, sino_end))
theta = tomopy.angles(prj.shape[0])
# normalize the data
prj = tomopy.normalize(prj, flat, dark)
best_center=1184
print "Best Center: ", best_center
calc_center = best_center
#calc_center = tomopy.find_center(prj, theta, emission=False, ind=0, init=best_center, tol=0.8)
print "Calculated Center:", calc_center
# reconstruct
rec = tomopy.recon(prj, theta, center=calc_center, algorithm='gridrec', emission=False)
#rec = tomopy.circ_mask(rec, axis=0)
# Write data as stack of TIFs.
tomopy.io.writer.write_tiff_stack(rec, fname=output_name)
plt.gray()
plt.axis('off')
plt.imshow(rec[0])
示例9: reconstruct
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):
sample_detector_distance = 8 # Propagation distance of the wavefront in cm
detector_pixel_size_x = 2.247e-4 # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
monochromator_energy = 24.9 # Energy of incident wave in keV
alpha = 1e-02 # Phase retrieval coeff.
zinger_level = 800 # Zinger level for projections
zinger_level_w = 1000 # Zinger level for white
# Read APS 32-BM raw data.
proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
# zinger_removal
# proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
# flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)
# Flat-field correction of raw data.
##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
data = tomopy.normalize(proj, flat, dark)
# remove stripes
data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)
# data = tomopy.remove_stripe_ti(data, alpha=1.5)
# data = tomopy.remove_stripe_sf(data, size=150)
# phase retrieval
#data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)
print("Raw data: ", h5fname)
print("Center: ", rot_center)
data = tomopy.minus_log(data)
data = tomopy.remove_nan(data, val=0.0)
data = tomopy.remove_neg(data, val=0.00)
data[np.where(data == np.inf)] = 0.00
rot_center = rot_center/np.power(2, float(binning))
data = tomopy.downsample(data, level=binning)
data = tomopy.downsample(data, level=binning, axis=1)
# Reconstruct object.
if algorithm == 'sirtfbp':
rec = rec_sirtfbp(data, theta, rot_center)
elif algorithm == 'astrasirt':
extra_options ={'MinConstraint':0}
options = {'proj_type':'cuda', 'method':'SIRT_CUDA', 'num_iter':200, 'extra_options':extra_options}
rec = tomopy.recon(data, theta, center=rot_center, algorithm=tomopy.astra, options=options)
else:
rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
print("Algorithm: ", algorithm)
# Mask each reconstructed slice with a circle.
rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
return rec
示例10: save_partial_frames
def save_partial_frames(file_grid, save_folder, prefix, frame=0):
for (y, x), value in np.ndenumerate(file_grid):
print(value)
if (value != None):
prj, flt, drk = read_aps_32id_adaptive(value, proj=(frame, frame + 1))
prj = tomopy.normalize(prj, flt, drk)
prj = preprocess(prj)
fname = prefix + 'Y' + str(y).zfill(2) + '_X' + str(x).zfill(2)
dxchange.write_tiff(np.squeeze(prj), fname=os.path.join(save_folder, 'partial_frames', fname))
示例11: reconstruct
def reconstruct(h5fname, sino, rot_center, binning, algorithm='gridrec'):
sample_detector_distance = 8 # Propagation distance of the wavefront in cm
detector_pixel_size_x = 2.247e-4 # Detector pixel size in cm (5x: 1.17e-4, 2X: 2.93e-4)
monochromator_energy = 24.9 # Energy of incident wave in keV
alpha = 1e-02 # Phase retrieval coeff.
zinger_level = 800 # Zinger level for projections
zinger_level_w = 1000 # Zinger level for white
# h5fname_norm = '/local/data/2019-02/Burke/C47M_0015.h5'
h5fname_norm = '/local/data/2019-02/Burke/kc78_Menardii_0003.h5'
proj1, flat, dark, theta1 = dxchange.read_aps_32id(h5fname_norm, sino=sino)
proj, dummy, dummy1, theta = dxchange.read_aps_32id(h5fname, sino=sino)
# zinger_removal
proj = tomopy.misc.corr.remove_outlier(proj, zinger_level, size=15, axis=0)
flat = tomopy.misc.corr.remove_outlier(flat, zinger_level_w, size=15, axis=0)
# Flat-field correction of raw data.
##data = tomopy.normalize(proj, flat, dark, cutoff=0.8)
data = tomopy.normalize(proj, flat, dark)
# remove stripes
data = tomopy.remove_stripe_fw(data,level=7,wname='sym16',sigma=1,pad=True)
#data = tomopy.remove_stripe_ti(data, alpha=1.5)
data = tomopy.remove_stripe_sf(data, size=20)
# phase retrieval
#data = tomopy.prep.phase.retrieve_phase(data,pixel_size=detector_pixel_size_x,dist=sample_detector_distance,energy=monochromator_energy,alpha=alpha,pad=True)
print("Raw data: ", h5fname)
print("Center: ", rot_center)
data = tomopy.minus_log(data)
data = tomopy.remove_nan(data, val=0.0)
data = tomopy.remove_neg(data, val=0.00)
data[np.where(data == np.inf)] = 0.00
rot_center = rot_center/np.power(2, float(binning))
data = tomopy.downsample(data, level=binning)
data = tomopy.downsample(data, level=binning, axis=1)
# Reconstruct object.
if algorithm == 'sirtfbp':
rec = rec_sirtfbp(data, theta, rot_center)
else:
rec = tomopy.recon(data, theta, center=rot_center, algorithm=algorithm, filter_name='parzen')
print("Algorithm: ", algorithm)
# Mask each reconstructed slice with a circle.
rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
return rec
示例12: load_sino
def load_sino(filename, sino_n, normalize=True):
print('Loading {:s}, slice {:d}'.format(filename, sino_n))
sino_n = int(sino_n)
sino, flt, drk = read_aps_32id_adaptive(filename, sino=(sino_n, sino_n + 1))
if not normalize:
flt[:, :, :] = flt.max()
drk[:, :, :] = 0
sino = tomopy.normalize(sino, flt, drk)
# 1st slice of each tile of some samples contains mostly abnormally large values which should be removed.
if sino.max() > 1e2:
sino[np.abs(sino) > 1] = 1
return np.squeeze(sino)
示例13: reconstruct
def reconstruct(h5fname, sino, rot_center, args, blocked_views=None):
# Read APS 32-BM raw data.
proj, flat, dark, theta = dxchange.read_aps_32id(h5fname, sino=sino)
# Manage the missing angles:
if blocked_views is not None:
print("Blocked Views: ", blocked_views)
proj = np.concatenate((proj[0:blocked_views[0], :, :],
proj[blocked_views[1]+1:-1, :, :]), axis=0)
theta = np.concatenate((theta[0:blocked_views[0]],
theta[blocked_views[1]+1: -1]))
# Flat-field correction of raw data.
data = tomopy.normalize(proj, flat, dark, cutoff=1.4)
# remove stripes
data = tomopy.remove_stripe_fw(data, level=7, wname='sym16', sigma=1,
pad=True)
print("Raw data: ", h5fname)
print("Center: ", rot_center)
data = tomopy.minus_log(data)
data = tomopy.remove_nan(data, val=0.0)
data = tomopy.remove_neg(data, val=0.00)
data[np.where(data == np.inf)] = 0.00
algorithm = args.algorithm
ncores = args.ncores
nitr = args.num_iter
# always add algorithm
_kwargs = {"algorithm": algorithm}
# assign number of cores
_kwargs["ncore"] = ncores
# don't assign "num_iter" if gridrec or fbp
if algorithm not in ["fbp", "gridrec"]:
_kwargs["num_iter"] = nitr
# Reconstruct object.
with timemory.util.auto_timer(
"[tomopy.recon(algorithm='{}')]".format(algorithm)):
rec = tomopy.recon(proj, theta, **_kwargs)
# Mask each reconstructed slice with a circle.
rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
return rec
示例14: write_first_frames
def write_first_frames(ui):
root = os.getcwd()
os.chdir(ui.raw_folder)
try:
os.mkdir('first_frames')
except:
pass
for i in ui.filelist:
ui.boxMetaOut.insert(END, i + '\n')
prj, flt, drk = dxchange.read_aps_32id(i, proj=(0, 1))
prj = tomopy.normalize(prj, flt, drk)
dxchange.write_tiff(prj, os.path.join('first_frames', os.path.splitext(i)[0]))
示例15: main
def main(argv):
try:
opts, args = getopt.getopt(argv,"hc:s:",["core=","sino="])
except getopt.GetoptError:
print 'test.py -c <ncore> -s <nsino>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'test.py -c <ncore> -s <nsino>'
sys.exit()
elif opt in ("-c", "--core"):
ncore = int(arg)
elif opt in ("-s", "--sino"):
nsino = int(arg)
# **********************************************
#file_name = '/local/decarlo/data/proj_10.hdf'
#output_name = './recon/proj10_rec'
#sino_start = 0
#sino_end = 2048
# **********************************************
file_name = '/local/decarlo/data/Hornby_APS_2011.h5'
output_name = './recon/Hornby_APS_2011_'
best_center=1024
sino_start = 0
sino_end = 1792
# **********************************************
step_00 = time.time()
step_02_delta_total = 0
count = 0
while (sino_start <= (sino_end - nsino)):
# Read HDF5 file.
prj, flat, dark = tomopy.io.exchange.read_aps_32id(file_name, sino=(sino_start, sino_start+nsino))
# Fix flats because sample did not move
flat = np.full((flat.shape[0], flat.shape[1], flat.shape[2]), 1000)
# Set angles
theta = tomopy.angles(prj.shape[0])
# normalize the prj
prj = tomopy.normalize(prj, flat, dark)
best_center = 1298
step_01 = time.time()
# reconstruct
rec = tomopy.recon(prj, theta, center=best_center, algorithm='gridrec', emission=False, ncore = ncore)