本文整理汇总了Python中tkp.db.generic.columns_from_table函数的典型用法代码示例。如果您正苦于以下问题:Python columns_from_table函数的具体用法?Python columns_from_table怎么用?Python columns_from_table使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了columns_from_table函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_two_field_overlap_new_transient
def test_two_field_overlap_new_transient(self):
"""Now for something more interesting - two overlapping fields, 4 sources:
one steady source only in lower field,
one steady source in both fields,
one steady source only in upper field,
one transient source in both fields but only at 2nd timestep.
"""
n_images = 2
xtr_radius = 1.5
im_params = db_subs.example_dbimage_datasets(n_images,
xtr_radius=xtr_radius)
im_params[1]['centre_decl'] += xtr_radius * 1
imgs = []
lower_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius)
upper_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[1]['centre_ra'],
dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius)
overlap_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius)
overlap_transient = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius)
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0]))
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1]))
imgs[0].insert_extracted_sources([lower_steady_src, overlap_steady_src])
nd_posns = dbmon.get_nulldetections(imgs[0].id, deRuiter_r=1)
self.assertEqual(len(nd_posns), 0)
imgs[0].associate_extracted_sources(deRuiter_r=0.1)
imgs[1].insert_extracted_sources([upper_steady_src, overlap_steady_src,
overlap_transient])
nd_posns = dbmon.get_nulldetections(imgs[1].id, deRuiter_r=1)
self.assertEqual(len(nd_posns), 0)
imgs[1].associate_extracted_sources(deRuiter_r=0.1)
runcats = columns_from_table('runningcatalog',
where={'dataset': self.dataset.id})
self.assertEqual(len(runcats), 4) #sanity check.
monlist = columns_from_table('monitoringlist',
where={'dataset': self.dataset.id})
self.assertEqual(len(monlist), 1)
transients_qry = """\
SELECT *
FROM transient tr
,runningcatalog rc
WHERE rc.dataset = %s
AND tr.runcat = rc.id
"""
self.database.cursor.execute(transients_qry, (self.dataset.id,))
transients = get_db_rows_as_dicts(self.database.cursor)
self.assertEqual(len(transients), 1)
示例2: test_basic_same_field_case
def test_basic_same_field_case(self):
""" Here we start with 1 source in image0.
We then add image1 (same field as image0), with a double association
for the source, and check assocskyrgn updates correctly.
"""
n_images = 2
im_params = db_subs.generate_timespaced_dbimages_data(n_images)
idx = 0
src_a = db_subs.example_extractedsource_tuple(
ra=im_params[idx]['centre_ra'],
dec=im_params[idx]['centre_decl'])
src_b = src_a._replace(ra=src_a.ra + 1. / 60.) # 1 arcminute offset
imgs = []
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx]))
imgs[idx].insert_extracted_sources([src_a])
imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin)
idx = 1
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[idx]))
imgs[idx].insert_extracted_sources([src_a, src_b])
imgs[idx].associate_extracted_sources(deRuiter_r, new_source_sigma_margin)
imgs[idx].update()
runcats = columns_from_table('runningcatalog',
where={'dataset':self.dataset.id})
self.assertEqual(len(runcats), 2) #Just a sanity check.
skyassocs = columns_from_table('assocskyrgn',
where={'skyrgn':imgs[idx]._data['skyrgn']})
self.assertEqual(len(skyassocs), 2)
示例3: test_infinite
def test_infinite(self):
# Check that database insertion doesn't choke on infinite errors.
dataset = DataSet(data={'description': 'example dataset'},
database=self.database)
image = Image(dataset=dataset, data=db_subs.example_dbimage_data_dict())
# Inserting a standard example extractedsource should be fine
extracted_source = db_subs.example_extractedsource_tuple()
image.insert_extracted_sources([extracted_source])
inserted = columns_from_table('extractedsource',
where= {'image' : image.id})
self.assertEqual(len(inserted), 1)
# But if the source has infinite errors we drop it and log a warning
extracted_source = db_subs.example_extractedsource_tuple(error_radius=float('inf'),
peak_err=float('inf'),
flux_err=float('inf'))
# We will add a handler to the root logger which catches all log
# output in a buffer.
iostream = BytesIO()
hdlr = logging.StreamHandler(iostream)
logging.getLogger().addHandler(hdlr)
image.insert_extracted_sources([extracted_source])
logging.getLogger().removeHandler(hdlr)
# We want to be sure that the error has been appropriately logged.
self.assertIn("Dropped source fit with infinite flux errors",
iostream.getvalue())
inserted = columns_from_table('extractedsource',
where= {'image' : image.id})
self.assertEqual(len(inserted), 1)
示例4: test_only_first_epoch_source
def test_only_first_epoch_source(self):
"""test_only_first_epoch_source
- Pretend to extract a source only from the first image.
- Run source association for each image, as we would in TraP.
- Check the image source listing works
- Check runcat and assocxtrsource are correct.
"""
first_epoch = True
extracted_source_ids=[]
for im in self.im_params:
self.db_imgs.append( Image( data=im, dataset=self.dataset) )
last_img =self.db_imgs[-1]
if first_epoch:
last_img.insert_extracted_sources(
[db_subs.example_extractedsource_tuple()],'blind')
last_img.associate_extracted_sources(deRuiter_r,
new_source_sigma_margin)
#First, check the runcat has been updated correctly:
running_cat = columns_from_table(table="runningcatalog",
keywords=['datapoints'],
where={"dataset":self.dataset.id})
self.assertEqual(len(running_cat), 1)
self.assertEqual(running_cat[0]['datapoints'], 1)
last_img.update()
last_img.update_sources()
img_xtrsrc_ids = [src.id for src in last_img.sources]
# print "ImageID:", last_img.id
# print "Imgs sources:", img_xtrsrc_ids
if first_epoch:
self.assertEqual(len(img_xtrsrc_ids),1)
extracted_source_ids.extend(img_xtrsrc_ids)
assocxtrsrcs_rows = columns_from_table(table="assocxtrsource",
keywords=['runcat', 'xtrsrc' ],
where={"xtrsrc":img_xtrsrc_ids[0]})
self.assertEqual(len(assocxtrsrcs_rows),1)
self.assertEqual(assocxtrsrcs_rows[0]['xtrsrc'], img_xtrsrc_ids[0])
else:
self.assertEqual(len(img_xtrsrc_ids),0)
first_epoch=False
#Assocxtrsources still ok after multiple images?
self.assertEqual(len(extracted_source_ids),1)
assocxtrsrcs_rows = columns_from_table(table="assocxtrsource",
keywords=['runcat', 'xtrsrc' ],
where={"xtrsrc":extracted_source_ids[0]})
self.assertEqual(len(assocxtrsrcs_rows),1)
self.assertEqual(assocxtrsrcs_rows[0]['xtrsrc'], extracted_source_ids[0],
"Runcat xtrsrc entry must match the only extracted source")
示例5: test_single_fixed_source
def test_single_fixed_source(self):
"""test_single_fixed_source
- Pretend to extract the same source in each of a series of images.
- Perform source association
- Check the image source listing works
- Check runcat, assocxtrsource.
"""
fixed_src_runcat_id = None
for img_idx, im in enumerate(self.im_params):
self.db_imgs.append( Image(data=im, dataset=self.dataset))
last_img = self.db_imgs[-1]
insert_extracted_sources(last_img._id,
[db_subs.example_extractedsource_tuple()],'blind')
associate_extracted_sources(last_img._id, deRuiter_r,
new_source_sigma_margin)
running_cat = columns_from_table(table="runningcatalog",
keywords=['id', 'datapoints'],
where={"dataset":self.dataset.id})
self.assertEqual(len(running_cat), 1)
self.assertEqual(running_cat[0]['datapoints'], img_idx+1)
# Check runcat ID does not change for a steady single source
if img_idx == 0:
fixed_src_runcat_id = running_cat[0]['id']
self.assertIsNotNone(fixed_src_runcat_id, "No runcat id assigned to source")
self.assertEqual(running_cat[0]['id'], fixed_src_runcat_id,
"Multiple runcat ids for same fixed source")
runcat_flux = columns_from_table(table="runningcatalog_flux",
keywords=['f_datapoints'],
where={"runcat":fixed_src_runcat_id})
self.assertEqual(len(runcat_flux),1)
self.assertEqual(img_idx+1, runcat_flux[0]['f_datapoints'])
last_img.update()
last_img.update_sources()
img_xtrsrc_ids = [src.id for src in last_img.sources]
self.assertEqual(len(img_xtrsrc_ids), 1)
#Get the association row for most recent extraction:
assocxtrsrcs_rows = columns_from_table(table="assocxtrsource",
keywords=['runcat', 'xtrsrc' ],
where={"xtrsrc":img_xtrsrc_ids[0]})
# print "ImageID:", last_img.id
# print "Imgs sources:", img_xtrsrc_ids
# print "Assoc entries:", assocxtrsrcs_rows
# print "First extracted source id:", ds_source_ids[0]
# if len(assocxtrsrcs_rows):
# print "Associated source:", assocxtrsrcs_rows[0]['xtrsrc']
self.assertEqual(len(assocxtrsrcs_rows),1,
msg="No entries in assocxtrsrcs for image number "+str(img_idx))
self.assertEqual(assocxtrsrcs_rows[0]['runcat'], fixed_src_runcat_id,
"Mismatched runcat id in assocxtrsrc table")
示例6: test_basic_insertion
def test_basic_insertion(self):
"""Here we begin with a single insertion, and check a relevant entry
exists in the skyregion table.
The key logic checked here is that inserting an image with duplicate
skyregion will return the same skyrgn id as the first image of that field,
conversely a new region results in a new skyrgn entry.
"""
self.database = tkp.db.Database()
db_subs.delete_test_database(self.database)
self.dataset = tkp.db.DataSet(database=self.database,
data={'description': "Skyrgn:" + self._testMethodName})
n_images = 3
im_params = db_subs.generate_timespaced_dbimages_data(n_images)
##First image:
image0 = tkp.db.Image(dataset=self.dataset, data=im_params[0])
image0.update()
skyrgns = columns_from_table('skyregion',
where={'dataset':self.dataset.id})
# if self.clean_table:
self.assertEqual(len(skyrgns), 1)
rgn_keys = ['centre_ra', 'centre_decl', 'xtr_radius']
first_skyrgn_id = None
for db_row in skyrgns:
if all([db_row[k] == im_params[0][k] for k in rgn_keys]):
first_skyrgn_id = db_row['id']
self.assertNotEqual(first_skyrgn_id, None)
self.assertEqual(image0._data['skyrgn'], first_skyrgn_id)
##Second, identical image:
image1 = tkp.db.Image(dataset=self.dataset, data=im_params[1])
image1.update()
self.assertEqual(image1._data['skyrgn'], first_skyrgn_id)
##Third, different image:
im_params[2]['centre_ra'] += im_params[2]['xtr_radius'] * 0.5
image2 = tkp.db.Image(dataset=self.dataset, data=im_params[2])
image2.update()
self.assertNotEqual(image2._data['skyrgn'], first_skyrgn_id)
skyrgns = columns_from_table('skyregion',
where={'dataset':self.dataset.id})
for db_row in skyrgns:
if all([db_row[k] == im_params[2][k] for k in rgn_keys]):
second_skyrgn_id = db_row['id']
self.assertNotEqual(second_skyrgn_id, None)
self.assertEqual(image2._data['skyrgn'], second_skyrgn_id)
示例7: test_new_skyregion_insertion
def test_new_skyregion_insertion(self):
"""Here we test the association logic executed upon insertion of a
new skyregion.
We expect that any pre-existing entries in the runningcatalog
which lie within the field of view will be marked as
'within this region', through the presence of an entry in table
``assocskyrgn``.
Conversely sources outside the FoV should not be marked as related.
We begin with img0, with a source at centre.
Then we add 2 more (empty) images/fields at varying positions.
"""
n_images = 6
im_params = db_subs.generate_timespaced_dbimages_data(n_images)
src_in_img0 = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'],)
##First image:
image0 = tkp.db.Image(dataset=self.dataset, data=im_params[0])
image0.insert_extracted_sources([src_in_img0])
image0.associate_extracted_sources(deRuiter_r, new_source_sigma_margin)
image0.update()
runcats = columns_from_table('runningcatalog',
where={'dataset':self.dataset.id})
self.assertEqual(len(runcats), 1) #Just a sanity check.
##Second, different *But overlapping* image:
idx = 1
im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 0.9
image1 = tkp.db.Image(dataset=self.dataset, data=im_params[idx])
image1.update()
assocs = columns_from_table('assocskyrgn',
where={'skyrgn':image1._data['skyrgn']})
self.assertEqual(len(assocs), 1)
self.assertEqual(assocs[0]['runcat'], runcats[0]['id'])
##Third, different *and NOT overlapping* image:
idx = 2
im_params[idx]['centre_decl'] += im_params[idx]['xtr_radius'] * 1.1
image2 = tkp.db.Image(dataset=self.dataset, data=im_params[idx])
image2.update()
assocs = columns_from_table('assocskyrgn',
where={'skyrgn':image2._data['skyrgn']})
self.assertEqual(len(assocs), 0)
示例8: test_single_fixed_source
def test_single_fixed_source(self):
"""test_single_fixed_source
- Pretend to extract the same source in each of a series of images.
- Perform source association
- Check the image source listing works
- Check runcat, assocxtrsource.
"""
imgs_loaded = 0
first_image = True
fixed_src_runcat_id = None
for im in self.im_params:
self.db_imgs.append( Image( data=im, dataset=self.dataset) )
last_img =self.db_imgs[-1]
last_img.insert_extracted_sources([db_subs.example_extractedsource_tuple()])
last_img.associate_extracted_sources(deRuiter_r=3.7)
imgs_loaded+=1
running_cat = columns_from_table(table="runningcatalog",
keywords=['id', 'datapoints'],
where={"dataset":self.dataset.id})
self.assertEqual(len(running_cat), 1)
self.assertEqual(running_cat[0]['datapoints'], imgs_loaded)
if first_image:
fixed_src_runcat_id = running_cat[0]['id']
self.assertIsNotNone(fixed_src_runcat_id, "No runcat id assigned to source")
self.assertEqual(running_cat[0]['id'], fixed_src_runcat_id,
"Multiple runcat ids for same fixed source")
last_img.update()
last_img.update_sources()
img_xtrsrc_ids = [src.id for src in last_img.sources]
self.assertEqual(len(img_xtrsrc_ids), 1)
#Get the association row for most recent extraction:
assocxtrsrcs_rows = columns_from_table(table="assocxtrsource",
keywords=['runcat', 'xtrsrc' ],
where={"xtrsrc":img_xtrsrc_ids[0]})
# print "ImageID:", last_img.id
# print "Imgs sources:", img_xtrsrc_ids
# print "Assoc entries:", assocxtrsrcs_rows
# print "First extracted source id:", ds_source_ids[0]
# if len(assocxtrsrcs_rows):
# print "Associated source:", assocxtrsrcs_rows[0]['xtrsrc']
self.assertEqual(len(assocxtrsrcs_rows),1,
msg="No entries in assocxtrsrcs for image number "+str(imgs_loaded))
self.assertEqual(assocxtrsrcs_rows[0]['runcat'], fixed_src_runcat_id,
"Mismatched runcat id in assocxtrsrc table")
示例9: TestMeridianLowerEdgeCase
def TestMeridianLowerEdgeCase(self):
"""What happens if a source is right on the meridian?"""
dataset = DataSet(data={'description':"Assoc 1-to-1:" +
self._testMethodName})
n_images = 3
im_params = db_subs.example_dbimage_datasets(n_images, centre_ra=0.5,
centre_decl=10)
src_list = []
src0 = db_subs.example_extractedsource_tuple(ra=0.0002, dec=10.5,
ra_fit_err=0.01, dec_fit_err=0.01)
src_list.append(src0)
src1 = src0._replace(ra=0.0003)
src_list.append(src1)
src2 = src0._replace(ra=0.0004)
src_list.append(src2)
for idx, im in enumerate(im_params):
im['centre_ra'] = 359.9
image = tkp.db.Image(dataset=dataset, data=im)
image.insert_extracted_sources([src_list[idx]])
associate_extracted_sources(image.id, deRuiter_r=3.717)
runcat = columns_from_table('runningcatalog', ['datapoints', 'wm_ra'],
where={'dataset':dataset.id})
# print "***\nRESULTS:", runcat, "\n*****"
self.assertEqual(len(runcat), 1)
self.assertEqual(runcat[0]['datapoints'], 3)
avg_ra = (src0.ra + src1.ra +src2.ra)/3
self.assertAlmostEqual(runcat[0]['wm_ra'], avg_ra)
示例10: _sync_with_database
def _sync_with_database(self):
"""Update object attributes from the database"""
results = columns_from_table(self.TABLE, keywords=None, where={self.ID: self._id})
# Shallow copy, but that's ok: all database values are
# immutable (including datetime objects)
if results:
self._data = results[0].copy()
else:
self._data = {}
示例11: _sync_with_database
def _sync_with_database(self):
"""Update object attributes from the database"""
results = columns_from_table(self.TABLE, keywords=None, where={self.ID: self._id})
# Shallow copy, but that's ok: all database values are
# immutable (including datetime objects)
if results:
# force to dict since sqlalchemy RowProxy doesn't have a copy
self._data = dict(results[0]).copy()
else:
self._data = {}
示例12: TestDeRuiterCalculation
def TestDeRuiterCalculation(self):
"""Check all the unit conversions are correct"""
dataset = DataSet(data={'description':"Assoc 1-to-1:" + self._testMethodName})
n_images = 2
im_params = db_subs.example_dbimage_datasets(n_images, centre_ra=10,
centre_decl=0)
#Note ra / ra_fit_err are in degrees.
# ra_sys_err is in arcseconds, but we set it = 0 so doesn't matter.
#ra_fit_err cannot be zero or we get div by zero errors.
#Also, there is a hard limit on association radii:
#currently this defaults to 0.03 degrees== 108 arcseconds
src0 = db_subs.example_extractedsource_tuple(ra=10.00, dec=0.0,
ra_fit_err=0.1, dec_fit_err=1.00,
ra_sys_err=0.0, dec_sys_err=0.0)
src1 = db_subs.example_extractedsource_tuple(ra=10.02, dec=0.0,
ra_fit_err=0.1, dec_fit_err=1.00,
ra_sys_err=0.0, dec_sys_err=0.0)
src_list = [src0, src1]
#NB dec_fit_err nonzero, but since delta_dec==0 this simplifies to:
expected_DR_radius = math.sqrt((src1.ra - src0.ra) ** 2 /
(src0.ra_fit_err ** 2 + src1.ra_fit_err ** 2))
# print "Expected DR", expected_DR_radius
for idx in [0, 1]:
image = tkp.db.Image(dataset=dataset,
data=im_params[idx])
image.insert_extracted_sources([src_list[idx]])
#Peform very loose association since we just want to store DR value.
associate_extracted_sources(image.id, deRuiter_r=100)
runcat = columns_from_table('runningcatalog', ['id'],
where={'dataset':dataset.id})
# print "***\nRESULTS:", runcat, "\n*****"
self.assertEqual(len(runcat), 1)
assoc = columns_from_table('assocxtrsource', ['r'],
where={'runcat':runcat[0]['id']})
# print "Got assocs:", assoc
self.assertEqual(len(assoc), 2)
self.assertAlmostEqual(assoc[1]['r'], expected_DR_radius)
示例13: test_two_field_overlap_nulling_src
def test_two_field_overlap_nulling_src(self):
"""Similar to above, but one source disappears:
Two overlapping fields, 4 sources:
one steady source only in lower field,
one steady source in both fields,
one steady source only in upper field,
one transient source in both fields but only at *1st* timestep.
"""
n_images = 2
xtr_radius = 1.5
im_params = db_subs.generate_timespaced_dbimages_data(n_images,
xtr_radius=xtr_radius)
im_params[1]['centre_decl'] += xtr_radius * 1
imgs = []
lower_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] - 0.5 * xtr_radius)
upper_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[1]['centre_ra'],
dec=im_params[1]['centre_decl'] + 0.5 * xtr_radius)
overlap_steady_src = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] + 0.2 * xtr_radius)
overlap_transient = db_subs.example_extractedsource_tuple(
ra=im_params[0]['centre_ra'],
dec=im_params[0]['centre_decl'] + 0.8 * xtr_radius)
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[0]))
imgs.append(tkp.db.Image(dataset=self.dataset, data=im_params[1]))
imgs[0].insert_extracted_sources([lower_steady_src, overlap_steady_src,
overlap_transient])
imgs[0].associate_extracted_sources(deRuiter_r=0.1,
new_source_sigma_margin=new_source_sigma_margin)
nd_posns = dbnd.get_nulldetections(imgs[0].id)
self.assertEqual(len(nd_posns), 0)
imgs[1].insert_extracted_sources([upper_steady_src, overlap_steady_src])
imgs[1].associate_extracted_sources(deRuiter_r=0.1,
new_source_sigma_margin=new_source_sigma_margin)
#This time we don't expect to get an immediate transient detection,
#but we *do* expect to get a null-source forced extraction request:
nd_posns = dbnd.get_nulldetections(imgs[1].id)
self.assertEqual(len(nd_posns), 1)
runcats = columns_from_table('runningcatalog',
where={'dataset':self.dataset.id})
self.assertEqual(len(runcats), 4) #sanity check.
示例14: test_null_case_sequential
def test_null_case_sequential(self):
"""test_null_case_sequential
-Check extractedsource insertion routines can deal with empty input!
-Check source association can too
"""
for im in self.im_params:
self.db_imgs.append(Image( data=im, dataset=self.dataset))
self.db_imgs[-1].insert_extracted_sources([])
self.db_imgs[-1].associate_extracted_sources(deRuiter_r=3.7)
running_cat = columns_from_table(table="runningcatalog",
keywords="*",
where={"dataset":self.dataset.id})
self.assertEqual(len(running_cat), 0)
示例15: runcat_entries
def runcat_entries(self):
"""
Returns:
list: a list of dictionarys representing rows in runningcatalog,
for all sources belonging to this dataset
Column 'id' is returned with the key 'runcat'
Currently only returns 3 columns:
[{'runcat,'xtrsrc','datapoints'}]
"""
return columns_from_table(
"runningcatalog",
keywords=["id", "xtrsrc", "datapoints"],
alias={"id": "runcat"},
where={"dataset": self.id},
)