当前位置: 首页>>代码示例>>Python>>正文


Python ImagesLoader.fromPng方法代码示例

本文整理汇总了Python中thunder.rdds.fileio.imagesloader.ImagesLoader.fromPng方法的典型用法代码示例。如果您正苦于以下问题:Python ImagesLoader.fromPng方法的具体用法?Python ImagesLoader.fromPng怎么用?Python ImagesLoader.fromPng使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在thunder.rdds.fileio.imagesloader.ImagesLoader的用法示例。


在下文中一共展示了ImagesLoader.fromPng方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: loadImages

# 需要导入模块: from thunder.rdds.fileio.imagesloader import ImagesLoader [as 别名]
# 或者: from thunder.rdds.fileio.imagesloader.ImagesLoader import fromPng [as 别名]
    def loadImages(self, dataPath, dims=None, dtype=None, inputFormat='stack', ext=None,
                   startIdx=None, stopIdx=None, recursive=False, nplanes=None, npartitions=None,
                   renumber=False, confFilename='conf.json'):
        """
        Loads an Images object from data stored as a binary image stack, tif, or png files.

        Supports single files or multiple files, stored on a local file system, a networked file sytem
        (mounted and available on all nodes), or Amazon S3. HDFS is not currently supported for image file data.

        Parameters
        ----------
        dataPath: string
            Path to data files or directory, as either a local filesystem path or a URI.
            May include a single '*' wildcard in the filename. Examples of valid dataPaths include
            'local/directory/*.stack", "s3n:///my-s3-bucket/data/", or "file:///mnt/another/directory/".

        dims: tuple of positive int, optional (required if inputFormat is 'stack')
            Image dimensions. Binary stack data will be interpreted as a multidimensional array
            with the given dimensions, and should be stored in row-major order (Fortran or Matlab convention),
            where the first dimension changes most rapidly. For 'png' or 'tif' data dimensions
            will be read from the image file headers.

        inputFormat: str, optional, default = 'stack'
            Expected format of the input data: 'stack', 'png', or 'tif'. 'stack' indicates flat binary stacks.
            'png' or 'tif' indicate image format. Page of a multipage tif file will be extend along
            the third dimension. Separate files interpreted as distinct records, with ordering
            given by lexicographic sorting of file names.

        ext: string, optional, default = None
            File extension, default will be "bin" if inputFormat=="stack", "tif" for inputFormat=='tif',
            and 'png' for inputFormat=="png".

        dtype: string or numpy dtype, optional, default = 'int16'
            Data type of the image files to be loaded, specified as a numpy "dtype" string.
            Ignored for 'tif' or 'png' (data will be inferred from image formats).

        startIdx: nonnegative int, optional, default = None
            Convenience parameters to read only a subset of input files. Uses python slice conventions
            (zero-based indexing with exclusive final position). These parameters give the starting
            and final index after lexicographic sorting.

        stopIdx: nonnegative int, optional, default = None
            See startIdx.

        recursive: boolean, optional, default = False
            If true, will recursively descend directories rooted at dataPath, loading all files
            in the tree with an appropriate extension.

        nplanes: positive integer, optional, default = None
            Subdivide individual image files. Every `nplanes` from each file will be considered a new record.
            With nplanes=None (the default), a single file will be considered as representing a single record.
            If the number of records per file is not the same across all files, then `renumber` should be set
            to True to ensure consistent keys.

        npartitions: positive int, optional, default = None
            Specify number of partitions for the RDD, if unspecified will use 1 partition per image.

        renumber: boolean, optional, default = False
            Recalculate keys for records after images are loading. Only necessary if different files contain
            different number of records (e.g. due to specifying nplanes). See Images.renumber().

        confFilename : string, optional, default = 'conf.json'
            Name of conf file if using to specify parameters for binary stack data

        Returns
        -------
        data: thunder.rdds.Images
            An Images object, wrapping an RDD of with (int) : (numpy array) pairs

        """
        checkParams(inputFormat, ['stack', 'png', 'tif', 'tif-stack'])

        from thunder.rdds.fileio.imagesloader import ImagesLoader
        loader = ImagesLoader(self._sc)

        # Checking StartIdx is smaller or equal to StopIdx
        if startIdx is not None and stopIdx is not None and startIdx > stopIdx:
            raise Exception("Error. startIdx {} is larger than stopIdx {}".inputFormat(startIdx, stopIdx))

        if not ext:
            ext = DEFAULT_EXTENSIONS.get(inputFormat.lower(), None)

        if inputFormat.lower() == 'stack':
            data = loader.fromStack(dataPath, dims=dims, dtype=dtype, ext=ext, startIdx=startIdx, stopIdx=stopIdx,
                                    recursive=recursive, nplanes=nplanes, npartitions=npartitions,
                                    confFilename=confFilename)
        elif inputFormat.lower().startswith('tif'):
            data = loader.fromTif(dataPath, ext=ext, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive,
                                  nplanes=nplanes, npartitions=npartitions)
        else:
            if nplanes:
                raise NotImplementedError("nplanes argument is not supported for png files")
            data = loader.fromPng(dataPath, ext=ext, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive,
                                  npartitions=npartitions)

        if not renumber:
            return data
        else:
            return data.renumber()
开发者ID:logang,项目名称:thunder,代码行数:101,代码来源:context.py

示例2: loadImages

# 需要导入模块: from thunder.rdds.fileio.imagesloader import ImagesLoader [as 别名]
# 或者: from thunder.rdds.fileio.imagesloader.ImagesLoader import fromPng [as 别名]
    def loadImages(self, datapath, dims=None, inputformat='stack', dtype='int16', startidx=None, stopidx=None):
        """
        Loads an Images object from data stored as a binary image stack, tif, tif-stack, or png files.

        Supports single files or multiple files, stored on a local file system, a networked file sytem
        (mounted and available on all nodes), or Amazon S3. HDFS is not currently supported for image file data.

        Parameters
        ----------
        datapath: string
            Path to data files or directory, specified as either a local filesystem path or in a URI-like format,
            including scheme. A datapath argument may include a single '*' wildcard character in the filename. Examples
            of valid datapaths include 'a/local/relative/directory/*.stack", "s3n:///my-s3-bucket/data/mydatafile.tif",
            "/mnt/my/absolute/data/directory/", or "file:///mnt/another/data/directory/".

        dims: tuple of positive int, optional (but required if inputformat is 'stack')
            Dimensions of input image data, similar to a numpy 'shape' parameter, for instance (1024, 1024, 48). Binary
            stack data will be interpreted as coming from a multidimensional array of the specified dimensions. Stack
            data should be stored in row-major order (Fortran or Matlab convention) rather than column-major order (C
            or python/numpy convention), where the first dimension corresponds to that which is changing most rapidly
            on disk. So for instance given dims of (x, y, z), the coordinates of the data in a binary stack file
            should be ordered as [(x0, y0, z0), (x1, y0, zo), ..., (xN, y0, z0), (x0, y1, z0), (x1, y1, z0), ...,
            (xN, yM, z0), (x0, y0, z1), ..., (xN, yM, zP)].
            If inputformat is 'png', 'tif', or'tif-stack', the dims parameter (if any) will be ignored; data dimensions
            will instead be read out from the image file headers.

        inputformat: {'stack', 'png', 'tif', 'tif-stack'}. optional, default 'stack'
            Expected format of the input data. 'stack' indicates flat files of raw binary data. 'png' or 'tif' indicate
            two-dimensional image files of the corresponding formats. 'tif-stack' indicates a sequence of multipage tif
            files, with each page of the tif corresponding to a separate z-plane.
            For all formats, separate files are interpreted as distinct time points, with ordering given by
            lexicographic sorting of file names.
            This method assumes that stack data consists of signed 16-bit integers in native byte order. Data types of
            image file data will be as specified in the file headers.

        dtype: string or numpy dtype. optional, default 'int16'
            Data type of the image files to be loaded, specified as a numpy "dtype" string. If inputformat is
            'tif-stack', the dtype parameter (if any) will be ignored; data type will instead be read out from the
            tif headers.

        startidx: nonnegative int, optional
            startidx and stopidx are convenience parameters to allow only a subset of input files to be read in. These
            parameters give the starting index (inclusive) and final index (exclusive) of the data files to be used
            after lexicographically sorting all input data files matching the datapath argument. For example,
            startidx=None (the default) and stopidx=10 will cause only the first 10 data files in datapath to be read
            in; startidx=2 and stopidx=3 will cause only the third file (zero-based index of 2) to be read in. startidx
            and stopidx use the python slice indexing convention (zero-based indexing with an exclusive final position).

        stopidx: nonnegative int, optional
            See startidx.

        Returns
        -------
        data: thunder.rdds.Images
            A newly-created Images object, wrapping an RDD of <int index, numpy array> key-value pairs.

        """
        checkparams(inputformat, ['stack', 'png', 'tif', 'tif-stack'])

        from thunder.rdds.fileio.imagesloader import ImagesLoader
        loader = ImagesLoader(self._sc)

        if inputformat.lower() == 'stack':
            data = loader.fromStack(datapath, dims, dtype=dtype, startidx=startidx, stopidx=stopidx)
        elif inputformat.lower() == 'tif':
            data = loader.fromTif(datapath, startidx=startidx, stopidx=stopidx)
        elif inputformat.lower() == 'tif-stack':
            data = loader.fromMultipageTif(datapath, startidx=startidx, stopidx=stopidx)
        else:
            data = loader.fromPng(datapath)

        return data
开发者ID:Young-china,项目名称:thunder,代码行数:74,代码来源:context.py

示例3: loadImages

# 需要导入模块: from thunder.rdds.fileio.imagesloader import ImagesLoader [as 别名]
# 或者: from thunder.rdds.fileio.imagesloader.ImagesLoader import fromPng [as 别名]

#.........这里部分代码省略.........

        Parameters
        ----------
        dataPath: string
            Path to data files or directory, specified as either a local filesystem path or in a URI-like format,
            including scheme. A dataPath argument may include a single '*' wildcard character in the filename. Examples
            of valid dataPaths include 'a/local/relative/directory/*.stack", "s3n:///my-s3-bucket/data/mydatafile.tif",
            "/mnt/my/absolute/data/directory/", or "file:///mnt/another/data/directory/".

        dims: tuple of positive int, optional (but required if inputFormat is 'stack')
            Dimensions of input image data, similar to a numpy 'shape' parameter, for instance (1024, 1024, 48). Binary
            stack data will be interpreted as coming from a multidimensional array of the specified dimensions. Stack
            data should be stored in row-major order (Fortran or Matlab convention) rather than column-major order (C
            or python/numpy convention), where the first dimension corresponds to that which is changing most rapidly
            on disk. So for instance given dims of (x, y, z), the coordinates of the data in a binary stack file
            should be ordered as [(x0, y0, z0), (x1, y0, zo), ..., (xN, y0, z0), (x0, y1, z0), (x1, y1, z0), ...,
            (xN, yM, z0), (x0, y0, z1), ..., (xN, yM, zP)].
            If inputFormat is 'png' or 'tif', the dims parameter (if any) will be ignored; data dimensions
            will instead be read out from the image file headers.

        inputFormat: {'stack', 'png', 'tif'}. optional, default 'stack'
            Expected format of the input data. 'stack' indicates flat files of raw binary data. 'png' or 'tif' indicate
            image files of the corresponding formats. Each page of a multipage tif file will be interpreted as a
            separate z-plane. For all formats, separate files are interpreted as distinct time points, with ordering
            given by lexicographic sorting of file names.

        ext: string, optional, default None
            Extension required on data files to be loaded. By default will be "stack" if inputFormat=="stack", "tif" for
            inputFormat=='tif', and 'png' for inputFormat="png".

        dtype: string or numpy dtype. optional, default 'int16'
            Data type of the image files to be loaded, specified as a numpy "dtype" string. If inputFormat is
            'tif' or 'png', the dtype parameter (if any) will be ignored; data type will instead be read out from the
            tif headers.

        startIdx: nonnegative int, optional
            startIdx and stopIdx are convenience parameters to allow only a subset of input files to be read in. These
            parameters give the starting index (inclusive) and final index (exclusive) of the data files to be used
            after lexicographically sorting all input data files matching the dataPath argument. For example,
            startIdx=None (the default) and stopIdx=10 will cause only the first 10 data files in dataPath to be read
            in; startIdx=2 and stopIdx=3 will cause only the third file (zero-based index of 2) to be read in. startIdx
            and stopIdx use the python slice indexing convention (zero-based indexing with an exclusive final position).

        stopIdx: nonnegative int, optional
            See startIdx.

        recursive: boolean, default False
            If true, will recursively descend directories rooted at dataPath, loading all files in the tree that
            have an appropriate extension. Recursive loading is currently only implemented for local filesystems
            (not s3).

        nplanes: positive integer, default None
            If passed, will cause a single image file to be subdivided into multiple records. Every
            `nplanes` z-planes (or multipage tif pages) in the file will be taken as a new record, with the
            first nplane planes of the first file being record 0, the second nplane planes being record 1, etc,
            until the first file is exhausted and record ordering continues with the first nplane planes of the
            second file, and so on. With nplanes=None (the default), a single file will be considered as
            representing a single record. Keys are calculated assuming that all input files contain the same
            number of records; if the number of records per file is not the same across all files,
            then `renumber` should be set to True to ensure consistent keys.

        npartitions: positive int, optional
            If specified, request a certain number of partitions for the underlying Spark RDD. Default is 1
            partition per image file.

        renumber: boolean, optional, default False
            If renumber evaluates to True, then the keys for each record will be explicitly recalculated after
            all images are loaded. This should only be necessary at load time when different files contain
            different number of records. See Images.renumber().

        Returns
        -------
        data: thunder.rdds.Images
            A newly-created Images object, wrapping an RDD of <int index, numpy array> key-value pairs.

        """
        checkParams(inputFormat, ['stack', 'png', 'tif', 'tif-stack'])

        from thunder.rdds.fileio.imagesloader import ImagesLoader
        loader = ImagesLoader(self._sc)

        if not ext:
            ext = DEFAULT_EXTENSIONS.get(inputFormat.lower(), None)

        if inputFormat.lower() == 'stack':
            data = loader.fromStack(dataPath, dims, dtype=dtype, ext=ext, startIdx=startIdx, stopIdx=stopIdx,
                                    recursive=recursive, nplanes=nplanes, npartitions=npartitions)
        elif inputFormat.lower().startswith('tif'):
            data = loader.fromTif(dataPath, ext=ext, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive,
                                  nplanes=nplanes, npartitions=npartitions)
        else:
            if nplanes:
                raise NotImplementedError("nplanes argument is not supported for png files")
            data = loader.fromPng(dataPath, ext=ext, startIdx=startIdx, stopIdx=stopIdx,
                                  recursive=recursive, npartitions=npartitions)

        if not renumber:
            return data
        else:
            return data.renumber()
开发者ID:industrial-sloth,项目名称:thunder,代码行数:104,代码来源:context.py


注:本文中的thunder.rdds.fileio.imagesloader.ImagesLoader.fromPng方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。