本文整理汇总了Python中thinkplot.config函数的典型用法代码示例。如果您正苦于以下问题:Python config函数的具体用法?Python config怎么用?Python config使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了config函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_sincs
def plot_sincs():
start = 1.0
duration = 0.01
factor = 4
short = wave.segment(start=start, duration=duration)
short.plot()
sampled = sample(short, factor)
sampled.plot_vlines(color='gray')
spectrum = sampled.make_spectrum()
boxcar = make_boxcar(spectrum, factor)
sinc = boxcar.make_wave()
sinc.shift(sampled.ts[0])
sinc.roll(len(sinc)//2)
thinkplot.preplot(1)
sinc.plot()
# CAUTION: don't call plot_sinc_demo with a large wave or it will
# fill memory and crash
plot_sinc_demo(short, 4)
start = short.start + 0.004
duration = 0.00061
plot_sinc_demo(short, 4, start, duration)
thinkplot.config(xlim=[start, start+duration],
ylim=[-0.05, 0.17], legend=False)
示例2: aliasing_example
def aliasing_example(offset=0.000003):
"""Makes a figure showing the effect of aliasing.
"""
framerate = 10000
def plot_segment(freq):
signal = thinkdsp.CosSignal(freq)
duration = signal.period*4
thinkplot.Hlines(0, 0, duration, color='gray')
segment = signal.make_wave(duration, framerate=framerate*10)
segment.plot(linewidth=0.5, color='gray')
segment = signal.make_wave(duration, framerate=framerate)
segment.plot_vlines(label=freq, linewidth=4)
thinkplot.preplot(rows=2)
plot_segment(4500)
thinkplot.config(axis=[-0.00002, 0.0007, -1.05, 1.05])
thinkplot.subplot(2)
plot_segment(5500)
thinkplot.config(axis=[-0.00002, 0.0007, -1.05, 1.05])
thinkplot.save(root='aliasing1',
xlabel='Time (s)',
formats=FORMATS)
示例3: plot_derivative
def plot_derivative(wave, wave2):
# compute the derivative by spectral decomposition
spectrum = wave.make_spectrum()
spectrum3 = wave.make_spectrum()
spectrum3.differentiate()
# plot the derivative computed by diff and differentiate
wave3 = spectrum3.make_wave()
wave2.plot(color="0.7", label="diff")
wave3.plot(label="derivative")
thinkplot.config(xlabel="days", xlim=[0, 1650], ylabel="dollars", loc="upper left")
thinkplot.save(root="systems4")
# plot the amplitude ratio compared to the diff filter
amps = spectrum.amps
amps3 = spectrum3.amps
ratio3 = amps3 / amps
thinkplot.preplot(1)
thinkplot.plot(ratio3, label="ratio")
window = numpy.array([1.0, -1.0])
padded = zero_pad(window, len(wave))
fft_window = numpy.fft.rfft(padded)
thinkplot.plot(abs(fft_window), color="0.7", label="filter")
thinkplot.config(
xlabel="frequency (1/days)", xlim=[0, 1650 / 2], ylabel="amplitude ratio", ylim=[0, 4], loc="upper left"
)
thinkplot.save(root="systems5")
示例4: plot_convolution
def plot_convolution():
response = thinkdsp.read_wave("180961__kleeb__gunshots.wav")
response = response.segment(start=0.26, duration=5.0)
response.normalize()
dt = 1
shift = dt * response.framerate
factor = 0.5
gun2 = response + shifted_scaled(response, shift, factor)
gun2.plot()
thinkplot.config(xlabel="time (s)", ylabel="amplitude", ylim=[-1.05, 1.05], legend=False)
thinkplot.save(root="systems8")
signal = thinkdsp.SawtoothSignal(freq=410)
wave = signal.make_wave(duration=0.1, framerate=response.framerate)
total = 0
for j, y in enumerate(wave.ys):
total += shifted_scaled(response, j, y)
total.normalize()
wave.make_spectrum().plot(high=500, color="0.7", label="original")
segment = total.segment(duration=0.2)
segment.make_spectrum().plot(high=1000, label="convolved")
thinkplot.config(xlabel="frequency (Hz)", ylabel="amplitude")
thinkplot.save(root="systems9")
示例5: plot_facebook
def plot_facebook():
"""Plot Facebook prices and a smoothed time series.
"""
names = ['date', 'open', 'high', 'low', 'close', 'volume']
df = pd.read_csv('fb.csv', header=0, names=names, parse_dates=[0])
close = df.close.values[::-1]
dates = df.date.values[::-1]
days = (dates - dates[0]) / np.timedelta64(1,'D')
M = 30
window = np.ones(M)
window /= sum(window)
smoothed = np.convolve(close, window, mode='valid')
smoothed_days = days[M//2: len(smoothed) + M//2]
thinkplot.plot(days, close, color=GRAY, label='daily close')
thinkplot.plot(smoothed_days, smoothed, label='30 day average')
last = days[-1]
thinkplot.config(xlabel='Time (days)',
ylabel='Price ($)',
xlim=[-7, last+7],
legend=True,
loc='lower right')
thinkplot.save(root='convolution1')
示例6: plot_ratios
def plot_ratios(in_wave, out_wave):
# compare filters for cumsum and integration
diff_window = np.array([1.0, -1.0])
padded = thinkdsp.zero_pad(diff_window, len(in_wave))
diff_wave = thinkdsp.Wave(padded, framerate=in_wave.framerate)
diff_filter = diff_wave.make_spectrum()
cumsum_filter = diff_filter.copy()
cumsum_filter.hs = 1 / cumsum_filter.hs
cumsum_filter.plot(label='cumsum filter', color=GRAY, linewidth=7)
integ_filter = cumsum_filter.copy()
integ_filter.hs = integ_filter.framerate / (PI2 * 1j * integ_filter.fs)
integ_filter.plot(label='integral filter')
thinkplot.config(xlim=[0, integ_filter.max_freq],
yscale='log', legend=True)
thinkplot.save('diff_int8')
# compare cumsum filter to actual ratios
cumsum_filter.plot(label='cumsum filter', color=GRAY, linewidth=7)
in_spectrum = in_wave.make_spectrum()
out_spectrum = out_wave.make_spectrum()
ratio_spectrum = out_spectrum.ratio(in_spectrum, thresh=1)
ratio_spectrum.plot(label='ratio', style='.', markersize=4)
thinkplot.config(xlabel='Frequency (Hz)',
ylabel='Amplitude ratio',
xlim=[0, integ_filter.max_freq],
yscale='log', legend=True)
thinkplot.save('diff_int9')
示例7: plot_filters
def plot_filters(close):
"""Plots the filter that corresponds to diff, deriv, and integral.
"""
thinkplot.preplot(3, cols=2)
diff_window = np.array([1.0, -1.0])
diff_filter = make_filter(diff_window, close)
diff_filter.plot(label='diff')
deriv_filter = close.make_spectrum()
deriv_filter.hs = PI2 * 1j * deriv_filter.fs
deriv_filter.plot(label='derivative')
thinkplot.config(xlabel='Frequency (1/day)',
ylabel='Amplitude ratio',
loc='upper left')
thinkplot.subplot(2)
integ_filter = deriv_filter.copy()
integ_filter.hs = 1 / (PI2 * 1j * integ_filter.fs)
integ_filter.plot(label='integral')
thinkplot.config(xlabel='Frequency (1/day)',
ylabel='Amplitude ratio',
yscale='log')
thinkplot.save('diff_int3')
示例8: triangle_example
def triangle_example(freq):
"""Makes a figure showing a triangle wave.
freq: frequency in Hz
"""
framerate = 10000
signal = thinkdsp.TriangleSignal(freq)
duration = signal.period*3
segment = signal.make_wave(duration, framerate=framerate)
segment.plot()
thinkplot.save(root='triangle-%d-1' % freq,
xlabel='Time (s)',
axis=[0, duration, -1.05, 1.05])
wave = signal.make_wave(duration=0.5, framerate=framerate)
spectrum = wave.make_spectrum()
thinkplot.preplot(cols=2)
spectrum.plot()
thinkplot.config(xlabel='Frequency (Hz)',
ylabel='Amplitude')
thinkplot.subplot(2)
spectrum.plot()
thinkplot.config(ylim=[0, 500],
xlabel='Frequency (Hz)')
thinkplot.save(root='triangle-%d-2' % freq)
示例9: main
def main():
# make_figures()
wave = thinkdsp.read_wave('28042__bcjordan__voicedownbew.wav')
wave.unbias()
wave.normalize()
track_pitch(wave)
return
thinkplot.preplot(rows=1, cols=2)
plot_shifted(wave, 0.0003)
thinkplot.config(xlabel='time (s)',
ylabel='amplitude',
ylim=[-1, 1])
thinkplot.subplot(2)
plot_shifted(wave, 0.00225)
thinkplot.config(xlabel='time (s)',
ylim=[-1, 1])
thinkplot.save(root='autocorr3')
示例10: dct_plot
def dct_plot():
signal = thinkdsp.TriangleSignal(freq=400)
wave = signal.make_wave(duration=1.0, framerate=10000)
dct = wave.make_dct()
dct.plot()
thinkplot.config(xlabel='Frequency (Hz)', ylabel='DCT')
thinkplot.save(root='dct1',
formats=['pdf', 'eps'])
示例11: plot_diff_filter
def plot_diff_filter(close):
"""Plots the filter that corresponds to first order finite difference.
"""
diff_window = np.array([1.0, -1.0])
diff_filter = make_filter(diff_window, close)
diff_filter.plot()
thinkplot.config(xlabel='Frequency (1/day)', ylabel='Amplitude ratio')
thinkplot.save('diff_int3')
示例12: plot_convolution
def plot_convolution(response):
"""Plots the impulse response and a shifted, scaled copy.
"""
shift = 1
factor = 0.5
gun2 = response + shifted_scaled(response, shift, factor)
gun2.plot()
thinkplot.config(xlabel='Time (s)',
ylim=[-1.05, 1.05],
legend=False)
thinkplot.save(root='systems8')
示例13: process_noise
def process_noise(signal, root='white'):
"""Plots wave and spectrum for noise signals.
signal: Signal
root: string used to generate file names
"""
framerate = 11025
wave = signal.make_wave(duration=0.5, framerate=framerate)
# 0: waveform
segment = wave.segment(duration=0.1)
segment.plot(linewidth=1, alpha=0.5)
thinkplot.save(root=root+'noise0',
xlabel='Time (s)',
ylim=[-1.05, 1.05])
spectrum = wave.make_spectrum()
# 1: spectrum
spectrum.plot_power(linewidth=1, alpha=0.5)
thinkplot.save(root=root+'noise1',
xlabel='Frequency (Hz)',
ylabel='Power',
xlim=[0, spectrum.fs[-1]])
slope, _, _, _, _ = spectrum.estimate_slope()
print('estimated slope', slope)
# 2: integrated spectrum
integ = spectrum.make_integrated_spectrum()
integ.plot_power()
thinkplot.save(root=root+'noise2',
xlabel='Frequency (Hz)',
ylabel='Cumulative fraction of total power',
xlim=[0, framerate/2])
# 3: log-log power spectrum
spectrum.hs[0] = 0
thinkplot.preplot(cols=2)
spectrum.plot_power(linewidth=1, alpha=0.5)
thinkplot.config(xlabel='Frequency (Hz)',
ylabel='Power',
xlim=[0, framerate/2])
thinkplot.subplot(2)
spectrum.plot_power(linewidth=1, alpha=0.5)
thinkplot.config(xlabel='Frequency (Hz)',
xscale='log',
yscale='log',
xlim=[0, framerate/2])
thinkplot.save(root=root+'noise3')
示例14: plot_diff_deriv
def plot_diff_deriv(close):
change = thinkdsp.Wave(np.diff(close.ys), framerate=1)
deriv_spectrum = close.make_spectrum().differentiate()
deriv = deriv_spectrum.make_wave()
low, high = 0, 50
thinkplot.preplot(2)
thinkplot.plot(change.ys[low:high], label='diff')
thinkplot.plot(deriv.ys[low:high], label='derivative')
thinkplot.config(xlabel='Time (day)', ylabel='Price change ($)')
thinkplot.save('diff_int4')
示例15: plot_sampling
def plot_sampling(wave, root):
ax1 = thinkplot.preplot(2, rows=2)
wave.make_spectrum(full=True).plot(label='spectrum')
thinkplot.config(xlim=XLIM, xticklabels='invisible')
ax2 = thinkplot.subplot(2)
sampled = sample(wave, 4)
sampled.make_spectrum(full=True).plot(label='sampled')
thinkplot.config(xlim=XLIM, xlabel='Frequency (Hz)')
thinkplot.save(root=root,
formats=FORMATS)