当前位置: 首页>>代码示例>>Python>>正文


Python downsample.DownsampleFactorMax类代码示例

本文整理汇总了Python中theano.tensor.signal.downsample.DownsampleFactorMax的典型用法代码示例。如果您正苦于以下问题:Python DownsampleFactorMax类的具体用法?Python DownsampleFactorMax怎么用?Python DownsampleFactorMax使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DownsampleFactorMax类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_dim

 def get_dim(self, name):
     if name == 'input_':
         return self.input_dim
     if name == 'output':
         return tuple(DownsampleFactorMax.out_shape(self.input_dim,
                                                    self.pooling_size,
                                                    st=self.step))
开发者ID:ZhangAustin,项目名称:attention-lvcsr,代码行数:7,代码来源:conv.py

示例2: test_DownsampleFactorMaxGrad_grad_st_extra

    def test_DownsampleFactorMaxGrad_grad_st_extra(self):
        """checks the gradient of the gradient for the case that
        stride is used for extra examples"""
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((5, 3), (5, 3), (5, 3), (5, 5), (3, 2), (7, 7), (9, 9))
        stridesizes = ((3, 2), (7, 5), (10, 6), (1, 1), (2, 3), (10, 10), (1, 1))
        imvsizs = ((16, 16), (16, 16), (16, 16), (8, 5), (8, 5), (8, 5), (8, 5))

        for indx in numpy.arange(len(maxpoolshps)):
            imvsize = imvsizs[indx]
            imval = rng.rand(1, 2, imvsize[0], imvsize[1])
            stride = stridesizes[indx]
            maxpoolshp = maxpoolshps[indx]
            for ignore_border in [True, False]:
                grad_shape = DownsampleFactorMax.out_shape(
                    imval.shape, maxpoolshp, ignore_border=ignore_border, st=stride
                )
                grad_val = rng.rand(*grad_shape)

                def mp(input, grad):
                    out = DownsampleFactorMax(maxpoolshp, ignore_border=ignore_border, st=stride)(input)
                    grad_op = DownsampleFactorMaxGrad(maxpoolshp, ignore_border=ignore_border, st=stride)
                    return grad_op(input, out, grad)

                # skip the grad verification when the output is empty
                if numpy.prod(grad_shape) == 0:
                    continue
                utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:ZhangAustin,项目名称:attention-lvcsr,代码行数:28,代码来源:test_downsample.py

示例3: test_AveragePoolPaddingStride_grad_grad

    def test_AveragePoolPaddingStride_grad_grad(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        imgsizes = ((10, 10), (10, 5), (5, 5))
        avgpoolsizes = ((5, 3), (3, 5), (3, 3))
        stridesizes = ((3, 2), (2, 3), (3, 3))
        paddingsizes = ((2, 2), (2, 1), (2, 2))

        for i in range(len(imgsizes)):
            imgsize = imgsizes[i]
            imval = rng.rand(1, 1, imgsize[0], imgsize[1]) * 10.0
            avgpoolsize = avgpoolsizes[i]
            stridesize = stridesizes[i]
            paddingsize = paddingsizes[i]

            # 'average_exc_pad' with non-zero padding is not implemented
            for mode in ['sum', 'average_inc_pad']:
                grad_shape = DownsampleFactorMax.out_shape(imval.shape,
                                                           avgpoolsize, st=stridesize,
                                                           ignore_border=True, padding=paddingsize)
                grad_val = rng.rand(*grad_shape) * 10.0

                def mp(input, grad):
                    grad_op = AveragePoolGrad(avgpoolsize, ignore_border=True,
                                              st=stridesize, padding=paddingsize,
                                              mode=mode)
                    return grad_op(input, grad)
                utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:hhoareau,项目名称:Theano,代码行数:27,代码来源:test_downsample.py

示例4: test_DownsampleFactorMaxGrad_grad_st

    def test_DownsampleFactorMaxGrad_grad_st(self):
        """checks the gradient of the gradient for
        the case that stride is used"""
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (3, 3), (5, 3))
        stridesizes = ((1, 1), (3, 3), (5, 7))
        imval = rng.rand(1, 2, 16, 16)

        for maxpoolshp in maxpoolshps:
            for ignore_border in [True, False]:
                for stride in stridesizes:
                    grad_shape = DownsampleFactorMax.out_shape(
                        imval.shape, maxpoolshp,
                        ignore_border=ignore_border, st=stride)
                    grad_val = rng.rand(*grad_shape)

                    def mp(input, grad):
                        out = DownsampleFactorMax(
                            maxpoolshp, ignore_border=ignore_border,
                            st=stride)(input)
                        grad_op = MaxPoolGrad(
                            maxpoolshp, ignore_border=ignore_border,
                            st=stride)
                        return grad_op(input, out, grad)

                    utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:hhoareau,项目名称:Theano,代码行数:26,代码来源:test_downsample.py

示例5: get_dim

 def get_dim(self, name):
     if name == 'input_':
         return self.input_dim
     if name == 'output':
         return tuple(DownsampleFactorMax.out_shape(
             self.input_dim, self.pooling_size, st=self.step,
             ignore_border=self.ignore_border, padding=self.padding))
开发者ID:happygds,项目名称:blocks,代码行数:7,代码来源:conv.py

示例6: test_DownsampleFactorMaxPaddingStride_grad_grad

    def test_DownsampleFactorMaxPaddingStride_grad_grad(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        imgsizes = ((10, 10), (10, 5), (5, 5))
        maxpoolsizes = ((5, 3), (3, 5), (3, 3))
        stridesizes = ((3, 2), (2, 3), (3, 3))
        paddingsizes = ((2, 2), (2, 1), (2, 2))

        for i in range(len(imgsizes)):
            imgsize = imgsizes[i]
            imval = rng.rand(1, 1, imgsize[0], imgsize[1]) * 10.0
            maxpoolsize = maxpoolsizes[i]
            stridesize = stridesizes[i]
            paddingsize = paddingsizes[i]

            grad_shape = DownsampleFactorMax.out_shape(imval.shape,
                                                       maxpoolsize, st=stridesize,
                                                       ignore_border=True,
                                                       padding=paddingsize)
            grad_val = rng.rand(*grad_shape) * 10.0

            def mp(input, grad):
                out = DownsampleFactorMax(
                    maxpoolsize, ignore_border=True,
                    st=stridesize,
                    padding=paddingsize,
                    )(input)
                grad_op = MaxPoolGrad(maxpoolsize, ignore_border=True,
                                      st=stridesize, padding=paddingsize)
                return grad_op(input, out, grad)
            utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:ALISCIFP,项目名称:Segmentation,代码行数:30,代码来源:test_downsample.py

示例7: pool_output_shape_2d

def pool_output_shape_2d(input_shape,
                         axes,
                         pool_shape,
                         strides,
                         pads,
                         ignore_border=True):
    """
    compute output shape for a pool
    """
    return tuple(DownsampleFactorMax.out_shape(
        imgshape=input_shape,
        ds=pool_shape,
        st=strides,
        ignore_border=ignore_border,
        padding=pads,
    ))
开发者ID:diogo149,项目名称:treeano,代码行数:16,代码来源:downsample.py

示例8: test_DownsampleFactorMaxGrad_grad

    def test_DownsampleFactorMaxGrad_grad(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (3, 2), (2, 3))
        imval = rng.rand(2, 3, 3, 4) * 10.0
        # more variance means numeric gradient will be more accurate

        for maxpoolshp in maxpoolshps:
            for ignore_border in [True, False]:
                # print 'maxpoolshp =', maxpoolshp
                # print 'ignore_border =', ignore_border
                # The shape of the gradient will be the shape of the output
                grad_shape = DownsampleFactorMax.out_shape(imval.shape, maxpoolshp, ignore_border=ignore_border)
                grad_val = rng.rand(*grad_shape) * 10.0

                def mp(input, grad):
                    out = DownsampleFactorMax(maxpoolshp, ignore_border=ignore_border)(input)
                    grad_op = DownsampleFactorMaxGrad(maxpoolshp, ignore_border=ignore_border)
                    return grad_op(input, out, grad)

                utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:ZhangAustin,项目名称:attention-lvcsr,代码行数:20,代码来源:test_downsample.py

示例9: test_AveragePoolGrad_grad

    def test_AveragePoolGrad_grad(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        avgpoolshps = ((1, 1), (3, 2), (2, 3))
        imval = rng.rand(2, 3, 3, 4) * 10.0
        # more variance means numeric gradient will be more accurate

        for avgpoolshp in avgpoolshps:
            for ignore_border in [True, False]:
                for mode in ['sum', 'average_inc_pad', 'average_exc_pad']:
                    # print 'maxpoolshp =', maxpoolshp
                    # print 'ignore_border =', ignore_border
                    # The shape of the gradient will be the shape of the output
                    grad_shape = DownsampleFactorMax.out_shape(
                        imval.shape, avgpoolshp, ignore_border=ignore_border)
                    grad_val = rng.rand(*grad_shape) * 10.0

                    def mp(input, grad):
                        grad_op = AveragePoolGrad(
                            avgpoolshp, ignore_border=ignore_border, mode=mode)
                        return grad_op(input, grad)

                    utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:hhoareau,项目名称:Theano,代码行数:22,代码来源:test_downsample.py

示例10: test_AveragePoolGrad_grad_st

    def test_AveragePoolGrad_grad_st(self):
        """checks the gradient of the gradient for
        the case that stride is used"""
        rng = numpy.random.RandomState(utt.fetch_seed())
        avgpoolshps = ((1, 1), (3, 3), (5, 3))
        stridesizes = ((1, 1), (3, 3), (5, 7))
        imval = rng.rand(1, 2, 16, 16)

        for avgpoolshp in avgpoolshps:
            for ignore_border in [True, False]:
                for mode in ['sum', 'average_inc_pad', 'average_exc_pad']:
                    for stride in stridesizes:
                        grad_shape = DownsampleFactorMax.out_shape(
                            imval.shape, avgpoolshp,
                            ignore_border=ignore_border, st=stride)
                        grad_val = rng.rand(*grad_shape)

                        def mp(input, grad):
                            grad_op = AveragePoolGrad(
                                avgpoolshp, ignore_border=ignore_border,
                                st=stride, mode=mode)
                            return grad_op(input, grad)

                        utt.verify_grad(mp, [imval, grad_val], rng=rng)
开发者ID:hhoareau,项目名称:Theano,代码行数:24,代码来源:test_downsample.py

示例11: test_DownsampleFactorMax

    def test_DownsampleFactorMax(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        # generate random images
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3))
        imval = rng.rand(4, 2, 16, 16)
        images = tensor.dtensor4()
        for maxpoolshp, ignore_border, mode in product(maxpoolshps,
                                                       [True, False],
                                                       ['max',
                                                        'sum',
                                                        'average_inc_pad',
                                                        'average_exc_pad']):
                # print 'maxpoolshp =', maxpoolshp
                # print 'ignore_border =', ignore_border

                # Pure Numpy computation
                numpy_output_val = self.numpy_max_pool_2d(imval, maxpoolshp,
                                                          ignore_border,
                                                          mode=mode)
                output = max_pool_2d(images, maxpoolshp, ignore_border,
                                     mode=mode)
                f = function([images, ], [output, ])
                output_val = f(imval)
                utt.assert_allclose(output_val, numpy_output_val)

                # DownsampleFactorMax op
                maxpool_op = DownsampleFactorMax(maxpoolshp,
                                                 ignore_border=ignore_border,
                                                 mode=mode)(images)

                output_shape = DownsampleFactorMax.out_shape(imval.shape, maxpoolshp,
                                                        ignore_border=ignore_border)
                utt.assert_allclose(numpy.asarray(output_shape), numpy_output_val.shape)
                f = function([images], maxpool_op)
                output_val = f(imval)
                utt.assert_allclose(output_val, numpy_output_val)
开发者ID:huamichaelchen,项目名称:Theano,代码行数:36,代码来源:test_downsample.py

示例12: maxpool_2d

def maxpool_2d(z, in_dim, poolsize, poolstride):
    z = max_pool_2d(z, ds=poolsize, st=poolstride)
    output_size = tuple(DownsampleFactorMax.out_shape(in_dim, poolsize,
                                                      st=poolstride))
    return z, output_size
开发者ID:MultiPath,项目名称:ladder,代码行数:5,代码来源:nn.py

示例13: init_net

def init_net(num_of_classes, input_len, conv_params):
    """
    Major initialize of the neural net is in this method. You can adjust convolutional window size for each layer,
    number of filters for each layer and all the cascade parameters for every layer. We also initialize and define weights
    for neural net.
    :param num_of_classes: number of classes
    :param input_len: read (sequence chunk) length
    :return: weights in param variable, X and Y matrices, cost function, update function and maxima prediction
    """
    cwin1=4*6  # multiples of 4 because of data representation
    cwin2=3
    cwin3=2

    num_filters_1=32 / 2  # how many different filters to learn at each layer
    num_filters_2=48 / 2
    num_filters_3=64 / 2
    # size of convolution windows, for each layer different values can be used
    w = init_weights((num_filters_1, 1, 1, cwin1)) # first convolution, 32 filters, stack size 1, 1 rows, cwin1 columns
    w2 = init_weights((num_filters_2, num_filters_1, 1, cwin2)) # second convolution, 64 filters, stack size 32 (one stack for each filter from previous layer), 1 row, cwin2 columns
    w3 = init_weights((num_filters_3, num_filters_2, 1, cwin3)) # third convolution, 128 filters, stack size 64 (one stack for each filter from previous layes), 1 row, cwin3 columns

    print "#### CONVOLUTION PARAMETERS ####"
    print "cwin1 %d" % cwin1
    print "cwin2 %d" % cwin2
    print "cwin3 %d" % cwin3
    print "num_filters_1 %d" % num_filters_1
    print "num_filters_2 %d" % num_filters_2
    print "num_filters_3 %d" % num_filters_3

    # convolution: filters are moved by one position at a time, see parameter subsample=(1, 1)
    #
    # max pooling:
    #   scaling the input before applying the maxpool filter and
    #   displacement (stride) when sliding the max pool filters

    # l1 conv:
    es = input_len
    es = (es - cwin1 + 1)
    es = es / conv1_stride
    # l1 max_pool:
    es = DownsampleFactorMax.out_shape((1, es), (1, downscale1), st=(1, stride1))[1] # downscale for first layer
    print "l1 es:", es

    # l2 conv:
    es = (es - cwin2 + 1)
    # l2 max_pool:
    es = DownsampleFactorMax.out_shape((1, es), (1, downscale2), st=(1, stride2))[1] # downscale for second layer
    print "l2 es:", es

    # l3 conv:
    es = (es - cwin3 + 1)
    # l3 max_pool:
    es = DownsampleFactorMax.out_shape((1, es), (1, downscale3), st=(1, stride3))[1] # downscale for third layer
    print "l3 es:", es

    # downscaling is performed so that we correctly set number of filters in last layer

    w4 = init_weights((num_filters_3 * es, 500))  # fully conected last layer, connects the outputs of 128 filters to 500 (arbitrary) hidden nodes, which are then connected to the output nodes
    w_o = init_weights((500, num_of_classes))  # number of exptected classes

    # matrix types
    X = T.ftensor4()
    Y = T.fmatrix()

    noise_l1, noise_l2, noise_l3, noise_l4, noise_py_x = model(X, w, w2, w3, w4, 0.2, 0.5, w_o, conv_params)
    l1, l2, l3, l4, py_x = model(X, w, w2, w3, w4, 0., 0., w_o, conv_params)
    y_x = T.argmax(py_x, axis=1)  # maxima predictions

    cost = T.mean(T.nnet.categorical_crossentropy(noise_py_x, Y)) # classification matrix to optimize - maximize the value that is actually there and minimize the others
    params = [w, w2, w3, w4, w_o]
    updates = RMSprop(cost, params, lr=0.001) # update function

    return params, X, Y, cost, updates, y_x
开发者ID:mkopar,项目名称:Virus-classification-theano,代码行数:73,代码来源:build.py


注:本文中的theano.tensor.signal.downsample.DownsampleFactorMax类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。