当前位置: 首页>>代码示例>>Python>>正文


Python tensor.vector函数代码示例

本文整理汇总了Python中theano.tensor.vector函数的典型用法代码示例。如果您正苦于以下问题:Python vector函数的具体用法?Python vector怎么用?Python vector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了vector函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: calculate

def calculate(w1, w2, data, display):
    x = T.vector('x')
    w = T.vector('w')

    s = 1 / (1 + T.exp(-T.dot(x, w)))
    logistic = theano.function([x, w], s)

    if display:
        print("With: w1 = %f and w2 = %f" % (w1, w2))

    sum_error = 0
    sum_error_square = 0
    if isinstance(data, str) or not len(data):
        if not len(data):
            data = 'Data.txt'
        with open('dataFiles/' + data) as fp:
            reader = csv.reader(fp, delimiter=',')
            for line in reader:
                data.append([int(line[0]), float(line[1]), float(line[2])])
    if display:
        print('y\t\tf(x)\t\tE\t\tE^2')
    for i in range(0, len(data)):
        x1 = data[i][1]
        x2 = data[i][2]
        f = logistic([x1, x2], [w1, w2])
        e = data[i][0] - f
        e2 = e ** 2
        sum_error += e
        sum_error_square += e2
        if display:
            print('%f\t%f\t%f\t%f' % (data[i][0], f, e, e2))
    if display:
        print("\nSum:\t\t\t\t%f\t%f" % (sum_error, sum_error_square))
    return sum_error_square
开发者ID:sookool99,项目名称:Summer2015,代码行数:34,代码来源:error.py

示例2: test_softmax_optimizations_w_bias2

    def test_softmax_optimizations_w_bias2(self):
        x = tensor.matrix('x')
        b = tensor.vector('b')
        c = tensor.vector('c')
        one_of_n = tensor.lvector('one_of_n')
        op = crossentropy_categorical_1hot

        env = gof.Env(
                [x, b, c, one_of_n],
                [op(softmax(T.add(x,b,c)), one_of_n)])
        assert env.outputs[0].owner.op == op

        print 'BEFORE'
        for node in env.toposort():
            print node.op
        print '----'

        theano.compile.mode.optdb.query(
                theano.compile.mode.OPT_FAST_RUN).optimize(env)

        print 'AFTER'
        for node in env.toposort():
            print node.op
        print '===='
        assert len(env.toposort()) == 3

        assert str(env.outputs[0].owner.op) == 'OutputGuard'
        assert env.outputs[0].owner.inputs[0].owner.op == crossentropy_softmax_argmax_1hot_with_bias
开发者ID:lberrada,项目名称:Theano,代码行数:28,代码来源:test_nnet.py

示例3: test_grad_lazy_if

    def test_grad_lazy_if(self):
        # Tests that we can compute the gradients through lazy if
        x = tensor.vector('x', dtype=self.dtype)
        y = tensor.vector('y', dtype=self.dtype)
        c = tensor.iscalar('c')
        z = ifelse(c, x, y)
        gx, gy = tensor.grad(z.sum(), [x, y])

        f = theano.function([c, x, y], [self.cast_output(gx),
                                        self.cast_output(gy)],
                            mode=self.mode)
        # There is only 2 of the 3 ifelse that are moved on the GPU.
        # The one that stay on the CPU is for the shape.
        self.assertFunctionContains(f, self.get_ifelse(1), min=2, max=3)
        rng = numpy.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = numpy.asarray(rng.uniform(size=(xlen,)), self.dtype)
        vy = numpy.asarray(rng.uniform(size=(ylen,)), self.dtype)
        gx0, gy0 = f(1, vx, vy)
        assert numpy.allclose(gx0.shape, vx.shape)
        assert numpy.allclose(gy0.shape, vy.shape)
        assert numpy.all(numpy.asarray(gx0) == 1.)
        assert numpy.all(numpy.asarray(gy0) == 0.)

        gx0, gy0 = f(0, vx, vy)
        assert numpy.allclose(gx0.shape, vx.shape)
        assert numpy.allclose(gy0.shape, vy.shape)
        assert numpy.all(numpy.asarray(gx0) == 0.)
        assert numpy.all(numpy.asarray(gy0) == 1.)
开发者ID:aboSamoor,项目名称:Theano,代码行数:32,代码来源:test_ifelse.py

示例4: test_wrong_rcond_dimension

 def test_wrong_rcond_dimension(self):
     x = tensor.vector()
     y = tensor.vector()
     z = tensor.vector()
     b = theano.tensor.nlinalg.lstsq()(x, y, z)
     f = function([x, y, z], b)
     self.assertRaises(np.linalg.LinAlgError, f, [2, 1], [2, 1], [2, 1])
开发者ID:EugenePY,项目名称:Theano,代码行数:7,代码来源:test_nlinalg.py

示例5: _compile_func

def _compile_func():
    beta = T.vector('beta')
    b = T.scalar('b')
    X = T.matrix('X')
    y = T.vector('y')
    C = T.scalar('C')
    params = [beta, b, X, y, C]
    cost = 0.5 * (T.dot(beta, beta) + b * b) + C * T.sum(
        T.nnet.softplus(
            -T.dot(T.diag(y), T.dot(X, beta) + b)
        )
    )
    # Function computing in one go the cost, its gradient
    # with regard to beta and with regard to the bias.
    cost_grad = theano.function(params,[
        cost,
        T.grad(cost, beta),
        T.grad(cost, b)
    ])

    # Function for computing element-wise sigmoid, used for
    # prediction.
    log_predict = theano.function(
        [beta, b, X],
        T.nnet.sigmoid(b + T.dot(X, beta)),
        on_unused_input='warn'
    )

    return (cost_grad, log_predict)
开发者ID:alexisVallet,项目名称:dpm-identification,代码行数:29,代码来源:lr.py

示例6: test_infer_shape

    def test_infer_shape(self):
        for ndim in [1, 3]:
            x = T.TensorType(config.floatX, [False] * ndim)()
            shp = (np.arange(ndim) + 1) * 3
            a = np.random.random(shp).astype(config.floatX)

            for axis in self._possible_axis(ndim):
                for dtype in ["int8", "uint8", "uint64"]:
                    r_var = T.scalar(dtype=dtype)
                    r = np.asarray(3, dtype=dtype)
                    if dtype in self.numpy_unsupported_dtypes:
                        r_var = T.vector(dtype=dtype)
                        self.assertRaises(TypeError, repeat, x, r_var)
                    else:
                        self._compile_and_check([x, r_var],
                                                [RepeatOp(axis=axis)(x, r_var)],
                                                [a, r],
                                                self.op_class)

                        r_var = T.vector(dtype=dtype)
                        if axis is None:
                            r = np.random.randint(
                                1, 6, size=a.size).astype(dtype)
                        elif a.size > 0:
                            r = np.random.randint(
                                1, 6, size=a.shape[axis]).astype(dtype)
                        else:
                            r = np.random.randint(
                                1, 6, size=(10,)).astype(dtype)

                        self._compile_and_check(
                            [x, r_var],
                            [RepeatOp(axis=axis)(x, r_var)],
                            [a, r],
                            self.op_class)
开发者ID:Thrandis,项目名称:Theano,代码行数:35,代码来源:test_extra_ops.py

示例7: test_tagging

def test_tagging():
    brick = TestBrick(0)
    x = tensor.vector('x')
    y = tensor.vector('y')
    z = tensor.vector('z')

    def check_output_variable(o):
        assert get_application_call(o).application.brick is brick
        assert (get_application_call(o.owner.inputs[0]).application.brick
                is brick)

    # Case 1: both positional arguments are provided.
    u, v = brick.apply(x, y)
    for o in [u, v]:
        check_output_variable(o)

    # Case 2: `b` is given as a keyword argument.
    u, v = brick.apply(x, y=y)
    for o in [u, v]:
        check_output_variable(o)

    # Case 3: two positional and one keyword argument.
    u, v, w = brick.apply(x, y, z=z)
    for o in [u, v, w]:
        check_output_variable(o)

    # Case 4: one positional argument.
    u, v = brick.apply(x)
    check_output_variable(u)
    assert v == 1

    # Case 5: variable was wrapped in a list. We can not handle that.
    u, v = brick.apply([x])
    assert_raises(AttributeError, check_output_variable, u)
开发者ID:CVML,项目名称:blocks,代码行数:34,代码来源:test_bricks.py

示例8: test_grad_lazy_if

    def test_grad_lazy_if(self):
        # Tests that we can compute the gradients through lazy if
        x = tensor.vector('x')
        y = tensor.vector('y')
        c = tensor.iscalar('c')
        z = ifelse(c, x, y)
        gx, gy = tensor.grad(z.sum(), [x, y])

        f = theano.function([c, x, y], [gx, gy])
        rng = numpy.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = numpy.asarray(rng.uniform(size=(xlen,)), theano.config.floatX)
        vy = numpy.asarray(rng.uniform(size=(ylen,)), theano.config.floatX)
        gx0, gy0 = f(1, vx, vy)
        assert numpy.allclose(gx0.shape, vx.shape)
        assert numpy.allclose(gy0.shape, vy.shape)
        assert numpy.all(gx0 == 1.)
        assert numpy.all(gy0 == 0.)

        gx0, gy0 = f(0, vx, vy)
        assert numpy.allclose(gx0.shape, vx.shape)
        assert numpy.allclose(gy0.shape, vy.shape)
        assert numpy.all(gx0 == 0.)
        assert numpy.all(gy0 == 1.)
开发者ID:glorotxa,项目名称:Theano,代码行数:27,代码来源:test_ifelse.py

示例9: test_lop_override

    def test_lop_override(self, cls_ofg):
        x = T.vector()
        y = 1. / (1. + T.exp(-x))

        def lop_ov(inps, outs, grads):
            y_, = outs
            dedy_, = grads
            return [2. * y_ * (1. - y_) * dedy_]

        y_, dedy = T.vector(), T.vector()
        op_lop_ov = cls_ofg([x, y_, dedy], [2. * y_ * (1. - y_) * dedy])

        xx = T.vector()
        yy1 = T.sum(T.nnet.sigmoid(xx))
        gyy1 = 2. * T.grad(yy1, xx)

        for ov in [lop_ov, op_lop_ov]:
            op = cls_ofg([x], [y], lop_overrides=ov)
            yy2 = T.sum(op(xx))
            gyy2 = T.grad(yy2, xx)
            fn = function([xx], [gyy1, gyy2])

            xval = np.random.rand(32).astype(config.floatX)
            y1val, y2val = fn(xval)
            assert np.allclose(y1val, y2val)
开发者ID:Theano,项目名称:Theano,代码行数:25,代码来源:test_builders.py

示例10: __init__

    def __init__(self,dic_size,window,unit_id,tag_num,net_size,weight_decay,word_dim = 50, learning_rate = 0.1):
        def f_softplus(x): return T.log(T.exp(x) + 1)# - np.log(2)
        def f_rectlin(x): return x*(x>0)
        def f_rectlin2(x): return x*(x>0) + 0.01 * x
        nonlinear = {'tanh': T.tanh, 'sigmoid': T.nnet.sigmoid, 'softplus': f_softplus, 'rectlin': f_rectlin, 'rectlin2': f_rectlin2}
        self.non_unit = nonlinear[unit_id]
        self.weight_decay = weight_decay
        self.tag_num = tag_num
        self.window_size = window
        self.learning_rate = learning_rate
        self.worddim = word_dim
        self.w, self.b, self.A = self.init_w(net_size,tag_num)
        self.w2vtable = self.init_wtable(word_dim,dic_size)#table of word vectors
        x = T.vector('x')
        w = []
        b = []
        for i in range(len(self.w)):
            w.append(T.matrix())
            b.append(T.vector())

        output = self.network(x,w,b)
        og = []
        for j in range(self.tag_num):
            og.extend(T.grad(output[j],w+b+[x]))

        self.outfunction = theano.function([x]+w+b, output)
        self.goutfunction = theano.function([x]+w+b,[output]+og)
开发者ID:mswellhao,项目名称:active_NER,代码行数:27,代码来源:baseline.py

示例11: test_logpy

def test_logpy():
    x = tensor.vector()
    y = tensor.vector()
    z = tensor.inc_subtensor(x[1:3], y)
    node = z.owner

    # otw theano chokes on var attributes when nose tries to print a traceback
    # XXX this should be un-monkey-patched after the test runs by e.g. a
    # context manager decorator
    theano.gof.Apply.__repr__ = object.__repr__
    theano.gof.Apply.__str__ = object.__str__

    w = dict((name, var(name)) for name in [
        'start', 'stop', 'step', 'set_instead_of_inc', 'inputs', 'outputs',
        'inplace', 'whole_op', 'dta',
        ])

    pattern = raw_init(theano.Apply,
        op=raw_init(theano.tensor.IncSubtensor,
            idx_list=[slice(w['start'], w['stop'], w['step'])],
            inplace=w['inplace'],
            set_instead_of_inc=w['set_instead_of_inc'],
            destroyhandler_tolerate_aliased=w['dta']),
        inputs=w['inputs'],
        outputs=w['outputs'])

    match, = run(0, w, (eq, node, pattern))

    assert match['stop'] == 3
    assert match['inputs'] == [x, y]
开发者ID:jaberg,项目名称:theano_workspace,代码行数:30,代码来源:test_logpy_opt.py

示例12: __init__

 def __init__(self, C, D):
     self.W = theano.shared(np.ones((C,D), dtype='float32'))
     t_M = T.matrix('M', dtype='float32')
     t_vM = T.vector('M', dtype='float32')
     t_Y = T.vector('Y', dtype='float32')
     t_I = T.vector('I', dtype='float32')
     t_s = T.vector('s', dtype='float32')
     t_eps = T.scalar('epsilon', dtype='float32')
     self.input_integration = theano.function(
         [t_Y],
         T.dot(T.log(self.W),t_Y),
         allow_input_downcast=True
         )
     self.M_summation = theano.function(
         [t_M],
         T.sum(t_M, axis=0),
         allow_input_downcast=True
         )
     self.recurrent_softmax = theano.function(
         [t_I,t_vM],
         t_vM*T.exp(t_I)/T.sum(t_vM*T.exp(t_I)),
         allow_input_downcast=True
         )
     self.weight_update = theano.function(
         [t_Y,t_s,t_eps],
         self.W,
         updates={
             self.W:
             self.W + t_eps*(T.outer(t_s,t_Y) - t_s[:,np.newaxis]*self.W)
             },
         allow_input_downcast=True
         )
     self.epsilon = None
     self._Y = None
     self._s = None
开发者ID:dennisforster,项目名称:NeSi,代码行数:35,代码来源:poisson_theano.py

示例13: test_rmsprop_0

def test_rmsprop_0():
    # input
    x = TT.vector(name='x')
    B = theano.shared(floatX(np.ones((3, 5))), name='B')
    c = theano.shared(floatX(np.ones(3)), name='c')
    params = [B, c]
    # output
    y_pred = TT.nnet.softmax(TT.dot(B, x.T).T + c)
    y_gold = TT.vector(name="y_gold")
    # cost and grads
    cost = TT.sum((y_pred - y_gold)**2)
    grads = TT.grad(cost, wrt=params)
    # funcs
    cost_func, update_func, rms_params = rmsprop(params, grads,
                                                 [x], y_gold, cost)
    # check return values
    assert len(rms_params) == 4
    assert isinstance(rms_params[0][0], TT.sharedvar.TensorSharedVariable)
    assert not np.any(rms_params[0][0].get_value())
    # check convergence
    X = [floatX(np.random.rand(5)) for _ in xrange(N)]
    Y = [floatX(np.random.rand(3)) for _ in xrange(N)]
    icost = init_cost = end_cost = 0.
    for i in xrange(MAX_I):
        icost = 0.
        for x, y in zip(X, Y):
            icost += cost_func(x, y)
            update_func()
        if i == 0:
            init_cost = icost
        elif i == MAX_I - 1:
            end_cost = icost
    assert end_cost < init_cost
开发者ID:WladimirSidorenko,项目名称:DiscourseSenser,代码行数:33,代码来源:test_theano_utils.py

示例14: setup_decoder_step

 def setup_decoder_step(self):
   """Advance the decoder by one step.  Used at test time."""
   y_t = T.lscalar('y_t_for_dec')
   c_prev = T.vector('c_prev_for_dec')
   h_prev = T.vector('h_prev_for_dec')
   h_t = self.spec.f_dec(y_t, c_prev, h_prev)
   self._decoder_step = theano.function(inputs=[y_t, c_prev, h_prev], outputs=h_t)
开发者ID:arunchaganty,项目名称:nn-semparse,代码行数:7,代码来源:attention.py

示例15: test_softmax_optimizations_w_bias_vector

    def test_softmax_optimizations_w_bias_vector(self):
        x = tensor.vector('x')
        b = tensor.vector('b')
        one_of_n = tensor.lvector('one_of_n')
        op = crossentropy_categorical_1hot
        fgraph = gof.FunctionGraph(
                [x, b, one_of_n],
                [op(softmax(x + b), one_of_n)])
        assert fgraph.outputs[0].owner.op == op
        #print 'BEFORE'
        #for node in fgraph.toposort():
        #    print node.op
        #print printing.pprint(node.outputs[0])
        #print '----'

        theano.compile.mode.optdb.query(
                theano.compile.mode.OPT_FAST_RUN).optimize(fgraph)
        #print 'AFTER'
        #for node in fgraph.toposort():
        #    print node.op
        #print '===='
        assert len(fgraph.toposort()) == 3
        assert str(fgraph.outputs[0].owner.op) == 'OutputGuard'
        assert (fgraph.outputs[0].owner.inputs[0].owner.op ==
                crossentropy_softmax_argmax_1hot_with_bias)
开发者ID:repos-python,项目名称:Theano,代码行数:25,代码来源:test_nnet.py


注:本文中的theano.tensor.vector函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。