当前位置: 首页>>代码示例>>Python>>正文


Python tensor.shape_padright函数代码示例

本文整理汇总了Python中theano.tensor.shape_padright函数的典型用法代码示例。如果您正苦于以下问题:Python shape_padright函数的具体用法?Python shape_padright怎么用?Python shape_padright使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了shape_padright函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_prediction

 def create_prediction(self):  # 做一次predict的方法
     gfs = self.gfs
     pm25in = self.pm25in
     # 初始第一次前传
     self.layerstatus = self.model.forward(
         T.concatenate([gfs[:, 0], gfs[:, 1], gfs[:, 2], pm25in[:, 0], pm25in[:, 1], self.cnt[:, :, 0]], axis=1)
     )
     # results.shape?40*1
     self.results = self.layerstatus[-1]
     if self.steps > 1:
         self.layerstatus = self.model.forward(
             T.concatenate([gfs[:, 1], gfs[:, 2], gfs[:, 3], pm25in[:, 1], self.results, self.cnt[:, :, 1]], axis=1),
             self.layerstatus,
         )
         self.results = T.concatenate([self.results, self.layerstatus[-1]], axis=1)
         # 前传之后step-2次
         for i in xrange(2, self.steps):
             self.layerstatus = self.model.forward(
                 T.concatenate(
                     [
                         gfs[:, i],
                         gfs[:, i + 1],
                         gfs[:, i + 2],
                         T.shape_padright(self.results[:, i - 2]),
                         T.shape_padright(self.results[:, i - 1]),
                         self.cnt[:, :, i],
                     ],
                     axis=1,
                 ),
                 self.layerstatus,
             )
             # need T.shape_padright???
             self.results = T.concatenate([self.results, self.layerstatus[-1]], axis=1)
     return self.results
开发者ID:subercui,项目名称:RNN_pm25,代码行数:34,代码来源:Pm25RNN_MINIBATCH.py

示例2: roc_curves

def roc_curves(y_true, y_predicted):
    "returns roc curves calculated axis -1-wise"
    fps, tps, thresholds = _binary_clf_curves(y_true, y_predicted)
    last_col = _last_col_idx(y_true.ndim)
    fpr = fps.astype('float32') / T.shape_padright(fps[last_col], 1)
    tpr = tps.astype('float32') / T.shape_padright(tps[last_col], 1)
    return fpr, tpr, thresholds
开发者ID:fdoperezi,项目名称:santander,代码行数:7,代码来源:classification.py

示例3: maxpool_3D

def maxpool_3D(input, ds, ignore_border=False):
   
    #input.dimshuffle (0, 2, 1, 3, 4)   # convert to make video in back. 
    # no need to reshuffle. 
    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of 
    # downsamplefactormax. First maxpool frames as usual. 
    # Then maxpool the time dimension. Shift the time dimension to the third 
    # position, so rows and cols are in the back


    # extract dimensions
    frame_shape = input.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        frame_shape), 'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)          # so second and third dimensions of ds are for height and width
    output = op(input_4D)
    # restore to original shape                                     
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    # now maxpool time
    # output (time, rows, cols), reshape so that time is in the back
    shufl = (list(range(vid_dim-3)) + [vid_dim-2]+[vid_dim-1]+[vid_dim-3])
    input_time = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_time.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,width,time)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    # downsample mini-batch of videos in time
    op = DownsampleFactorMax((1,ds[0]), ignore_border)            # Here the time dimension is downsampled. 
    outtime = op(input_4D_time)
    # output 
    # restore to original shape (xxx, rows, cols, time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
    #rval = T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
开发者ID:kli-nlpr,项目名称:Convolutional-Neural-Networks,代码行数:60,代码来源:core.py

示例4: _warp_times

 def _warp_times(self, t):
     delta = tt.shape_padleft(t) / tt.shape_padright(self.period, t.ndim)
     delta += tt.shape_padright(self._base_time, t.ndim)
     ind = tt.cast(tt.floor(delta), "int64")
     dt = tt.stack([ttv[tt.clip(ind[i], 0, ttv.shape[0]-1)]
                    for i, ttv in enumerate(self.ttvs)], -1)
     return tt.shape_padright(t) + dt
开发者ID:dfm,项目名称:exoplanet,代码行数:7,代码来源:ttv.py

示例5: prediction

    def prediction(self, h, bias):
        srng = RandomStreams(seed=42)

        prop, mean_x, mean_y, std_x, std_y, rho, bernoulli = \
            self.compute_parameters(h, bias)

        mode = T.argmax(srng.multinomial(pvals=prop, dtype=prop.dtype), axis=1)

        v = T.arange(0, mean_x.shape[0])
        m_x = mean_x[v, mode]
        m_y = mean_y[v, mode]
        s_x = std_x[v, mode]
        s_y = std_y[v, mode]
        r = rho[v, mode]
        # cov = r * (s_x * s_y)

        normal = srng.normal((h.shape[0], 2))
        x = normal[:, 0]
        y = normal[:, 1]

        # x_n = T.shape_padright(s_x * x + cov * y + m_x)
        # y_n = T.shape_padright(s_y * y + cov * x + m_y)

        x_n = T.shape_padright(m_x + s_x * x)
        y_n = T.shape_padright(m_y + s_y * (x * r + y * T.sqrt(1.-r**2)))

        uniform = srng.uniform((h.shape[0],))
        pin = T.shape_padright(T.cast(bernoulli > uniform, floatX))

        return T.concatenate([x_n, y_n, pin], axis=1)
开发者ID:alexmlamb,项目名称:handwriting,代码行数:30,代码来源:model.py

示例6: __init__

    def __init__(self, n, p, *args, **kwargs):
        super(Multinomial, self).__init__(*args, **kwargs)

        p = p / tt.sum(p, axis=-1, keepdims=True)
        n = np.squeeze(n) # works also if n is a tensor

        if len(self.shape) > 1:
            m = self.shape[-2]
            try:
                assert n.shape == (m,)
            except (AttributeError, AssertionError):
                n = n * tt.ones(m)
            self.n = tt.shape_padright(n)
            self.p = p if p.ndim > 1 else tt.shape_padleft(p)
        elif n.ndim == 1:
            self.n = tt.shape_padright(n)
            self.p = p if p.ndim > 1 else tt.shape_padleft(p)
        else:
            # n is a scalar, p is a 1d array
            self.n = tt.as_tensor_variable(n)
            self.p = tt.as_tensor_variable(p)

        self.mean = self.n * self.p
        mode = tt.cast(tt.round(self.mean), 'int32')
        diff = self.n - tt.sum(mode, axis=-1, keepdims=True)
        inc_bool_arr = tt.abs_(diff) > 0
        mode = tt.inc_subtensor(mode[inc_bool_arr.nonzero()],
                                diff[inc_bool_arr.nonzero()])
        self.mode = mode
开发者ID:bballamudi,项目名称:pymc3,代码行数:29,代码来源:multivariate.py

示例7: getTheanoSimilarityFunction

def getTheanoSimilarityFunction():
    """
    Return a theano function erforming valid convolution of a filter on an
    image
    """
        
    # Define the input variables to the function
    patches = T.tensor3(dtype='float32') # AxBx(patchsize**2)
    filters = T.matrix(dtype='float32') # Cx(patchsize**2)
    globalMean = T.vector(dtype='float32')
    globalStd = T.vector(dtype='float32')
    
    # Perform canonical processing of the patches
    meanstd = patches.std()
    mean = T.shape_padright(patches.mean(2), n_ones=1)
    std = T.shape_padright(patches.std(2) + 0.1 * meanstd, n_ones=1)  
    std = T.shape_padright(patches.std(2) + 1e-6, n_ones=1)  
    canonicalPatches_ = (patches - mean) / std  
    canonicalPatches = (canonicalPatches_ - globalMean) / globalStd  

    # Compute the similarities between each patch and each filter
    similarities = T.tensordot(canonicalPatches, filters, axes=[[2],[1]]) # AxBxC
    
    normFactor = ((canonicalPatches** 2).sum(2) ** 0.5)
    normFactorPadded = T.shape_padright(normFactor, n_ones=1)
    
    # Normalize the similarities by the norm of the patches
    similaritiesNorm = (similarities / normFactorPadded)
    
    # Compile and return the theano function
    f = theano.function([patches, filters, globalMean, globalStd], 
                        similaritiesNorm, on_unused_input='ignore')
    return f
开发者ID:TongZZZ,项目名称:ift6266h13,代码行数:33,代码来源:extractKmeansFeatures.py

示例8: sym_mask_logdensity_estimator_intermediate

    def sym_mask_logdensity_estimator_intermediate(self, x, mask):
        non_linearity_name = self.parameters["nonlinearity"].get_name()
        assert non_linearity_name == "sigmoid" or non_linearity_name == "RLU"
        x = x.T  # BxD
        mask = mask.T  # BxD
        output_mask = constantX(1) - mask  # BxD
        D = constantX(self.n_visible)
        d = mask.sum(1)  # d is the 1-based index of the dimension whose value to infer (not the size of the context)
        masked_input = x * mask  # BxD
        h = self.nonlinearity(T.dot(masked_input, self.W1) + T.dot(mask, self.Wflags) + self.b1)  # BxH
        for l in xrange(self.n_layers - 1):
            h = self.nonlinearity(T.dot(h, self.Ws[l]) + self.bs[l])  # BxH
        z_alpha = T.tensordot(h, self.V_alpha, [[1], [1]]) + T.shape_padleft(self.b_alpha)
        z_mu = T.tensordot(h, self.V_mu, [[1], [1]]) + T.shape_padleft(self.b_mu)
        z_sigma = T.tensordot(h, self.V_sigma, [[1], [1]]) + T.shape_padleft(self.b_sigma)
        temp = T.exp(z_alpha)  # + 1e-6
        # temp += T.shape_padright(temp.sum(2)/1e-3)
        Alpha = temp / T.shape_padright(temp.sum(2))  # BxDxC
        Mu = z_mu  # BxDxC
        Sigma = T.exp(z_sigma)  # + 1e-6 #BxDxC

        # Alpha = Alpha * T.shape_padright(output_mask) + T.shape_padright(mask)
        # Mu = Mu * T.shape_padright(output_mask)
        # Sigma = Sigma * T.shape_padright(output_mask) + T.shape_padright(mask)
        # Phi = -constantX(0.5) * T.sqr((Mu - T.shape_padright(x*output_mask)) / Sigma) - T.log(Sigma) - constantX(0.5 * np.log(2*np.pi)) #BxDxC

        Phi = (
            -constantX(0.5) * T.sqr((Mu - T.shape_padright(x)) / Sigma)
            - T.log(Sigma)
            - constantX(0.5 * np.log(2 * np.pi))
        )  # BxDxC
        logdensity = (log_sum_exp(Phi + T.log(Alpha), axis=2) * output_mask).sum(1) * D / (D - d)
        return (logdensity, z_alpha, z_mu, z_sigma, Alpha, Mu, Sigma, h)
开发者ID:Irene-Li,项目名称:susyML,代码行数:33,代码来源:OrderlessMoGNADE.py

示例9: create_prediction

 def create_prediction(self):#做一次predict的方法
     gfs=self.gfs
     pm25in=self.pm25in
     #初始第一次前传
     gfs_x=T.concatenate([gfs[:,0],gfs[:,1],gfs[:,2]],axis=1)
     pm25in_x=T.concatenate([pm25in[:,0],pm25in[:,1]],axis=1)
     self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,0]],axis=1))
     self.results=self.layerstatus[-1]
     for i in xrange(1,7):#前6次(0-5),输出之前的先做的6个frame,之后第7次是第1个输出
         gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,i+2]],axis=1)
         pm25in_x=T.concatenate([pm25in_x[:,1:],pm25in[:,i+1]],axis=1)
         self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,i]],axis=1),self.layerstatus)
         self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
     if self.steps > 1:
         gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,9]],axis=1)
         pm25in_x=T.concatenate([pm25in_x[:,1:],T.shape_padright(self.results[:,-1])],axis=1)
         self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,7]],axis=1),self.layerstatus)
         self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
         #前传之后step-2次
         for i in xrange(2,self.steps):
             gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,i+8]],axis=1)
             pm25in_x=T.concatenate([pm25in_x[:,1:],T.shape_padright(self.results[:,-1])],axis=1)
             self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,i+6]],axis=1),self.layerstatus)
             #need T.shape_padright???
             self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
     return self.results
开发者ID:subercui,项目名称:RNN_pm25,代码行数:26,代码来源:PredictorOffline.py

示例10: filter_spike_train

 def filter_spike_train(n,S,taus):
     """ Helper function to filter the spike train
     """
     filt = T.shape_padright(filt_fn(taus[n]), n_ones=1)
     filtered_S = conv2d(T.shape_padright(S[:,n], n_ones=1), 
                         filt, 
                         border_mode='full')
     return filtered_S[0,:,0]
开发者ID:mmyros,项目名称:pyglm,代码行数:8,代码来源:impulse.py

示例11: dfe_dlhat

 def dfe_dlhat(self, g_hat, h_hat, l_hat, v):
     # term from loss function
     dloss_dl = self.label_multiplier * (T.dot(h_hat, self.Whl) + self.lbias)
     rval = dloss_dl * l_hat - l_hat * T.shape_padright(T.sum(l_hat * dloss_dl, axis=1))
     # term from entropy.
     # dentropy = T.sum(-l_hat * T.log(l_hat), axis=1)
     dentropy = - T.xlogx.xlogx(l_hat) - l_hat +\
                  l_hat * T.shape_padright(T.sum(T.xlogx.xlogx(l_hat) + l_hat, axis=1))
     return rval + dentropy
开发者ID:gdesjardins,项目名称:hossrbm,代码行数:9,代码来源:bin_hossrbm_labels.py

示例12: density_given_previous_a_and_x

        def density_given_previous_a_and_x(x, w, V_alpha, b_alpha, V_mu, b_mu, V_sigma, b_sigma, activations_factor, p_prev, a_prev, x_prev):
            a = a_prev + T.dot(T.shape_padright(x_prev, 1), T.shape_padleft(w, 1))
            h = self.nonlinearity(a * activations_factor)  # BxH

            Alpha = T.nnet.softmax(T.dot(h, V_alpha) + T.shape_padleft(b_alpha))  # BxC
            Mu = T.dot(h, V_mu) + T.shape_padleft(b_mu)  # BxC
            Sigma = T.exp((T.dot(h, V_sigma) + T.shape_padleft(b_sigma)))  # BxC
            p = p_prev + log_sum_exp(T.log(Alpha) - T.log(2 * Sigma) - T.abs_(Mu - T.shape_padright(x, 1)) / Sigma)
            return (p, a, x)
开发者ID:Irene-Li,项目名称:susyML,代码行数:9,代码来源:MoLaplaceNADE.py

示例13: _theano_confusion

 def _theano_confusion(self, Yh, Y, mask):
     Yh = T.argmax(Yh, axis=-1)
     shape = list(Yh.shape) + [self.n_out, self.n_out]
     C = T.zeros(shape, dtype='int64')
     i,j = T.mgrid[0:C.shape[0], 0:C.shape[1]]
     C = T.set_subtensor(C[i,j,Y,Yh], 1)
     mask = T.shape_padright(T.shape_padright(mask))
     C = C*mask
     return C
开发者ID:tbepler,项目名称:rnn,代码行数:9,代码来源:charrnn.py

示例14: __call__

 def __call__(self, crf, X, Y, mask=None, flank=0):
     Yh = self.decode(crf, X, Y)
     L = self.loss(Yh, Y)
     C = confusion(T.argmax(Yh,axis=-1), Y, Yh.shape[-1])
     if mask is not None:
         L *= T.shape_padright(mask)
         C *= T.shape_padright(T.shape_padright(mask))
     n = Yh.shape[0]
     return L[flank:n-flank], C[flank:n-flank]
开发者ID:tbepler,项目名称:rnn,代码行数:9,代码来源:crf.py

示例15: loss

 def loss(self, X, mask=None, flank=0, Z=None):
     if Z is None:
         Z = self.transform(self.noise(X), mask=mask)
     E = self.emit(Z)
     L = cross_entropy(E, X)
     C = confusion(T.argmax(E,axis=-1), X, E.shape[-1])
     if mask is not None:
         L *= T.shape_padright(mask)
         C *= T.shape_padright(T.shape_padright(mask))
     n = X.shape[0]
     return L[flank:n-flank], C[flank:n-flank]
开发者ID:tbepler,项目名称:rnn,代码行数:11,代码来源:topic_lstm.py


注:本文中的theano.tensor.shape_padright函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。