本文整理汇总了Python中theano.tensor.get_vector_length函数的典型用法代码示例。如果您正苦于以下问题:Python get_vector_length函数的具体用法?Python get_vector_length怎么用?Python get_vector_length使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_vector_length函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: quantized_lognormal_mixture_sampler
def quantized_lognormal_mixture_sampler(rstream, weights, mus, sigmas, step, draw_shape=None, ndim=None, dtype=None):
rstate = rstream.new_shared_rstate()
# shape prep
if draw_shape is None:
raise NotImplementedError()
elif draw_shape is tensor.as_tensor_variable(draw_shape):
shape = draw_shape
if ndim is None:
ndim = tensor.get_vector_length(shape)
elif tuple(draw_shape) == ():
ndim = 0
shape = tensor.as_tensor_variable(numpy.asarray([], dtype="int"))
else:
shape = tensor.stack(*draw_shape)
if ndim is None:
ndim = len(draw_shape)
assert tensor.get_vector_length(shape) == ndim
# XXX: be smarter about inferring broadcastable
op = QuantizedLognormalMixture(
tensor.TensorType(broadcastable=(False,) * ndim, dtype=theano.config.floatX if dtype is None else dtype)
)
rs, out = op(rstate, shape, weights, mus, sigmas, step)
rstream.add_default_update(out, rstate, rs)
return out
示例2: BGMM1_sampler
def BGMM1_sampler(rstream, weights, mus, sigmas, low, high,
draw_shape=None, ndim=None, dtype=None):
rstate = rstream.new_shared_rstate()
# shape prep
if draw_shape is None:
raise NotImplementedError()
elif draw_shape is tensor.as_tensor_variable(draw_shape):
shape = draw_shape
if ndim is None:
ndim = tensor.get_vector_length(shape)
else:
shape = tensor.hstack(*draw_shape)
if ndim is None:
ndim = len(draw_shape)
assert tensor.get_vector_length(shape) == ndim
# XXX: be smarter about inferring broadcastable
op = BGMM1(
tensor.TensorType(
broadcastable=(False,) * ndim,
dtype=theano.config.floatX if dtype is None else dtype))
rs, out = op(rstate, weights, mus, sigmas, low, high, shape)
rstream.add_default_update(out, rstate, rs)
return out
示例3: DM_sampler
def DM_sampler(rstream, alpha, draw_shape=None, ndim=None, dtype=None):
shape = infer_shape(rstream.dirichlet(alpha, draw_shape=draw_shape))
rstate = rstream.new_shared_rstate()
op = DM(tensor.TensorType(broadcastable=(False,) * tensor.get_vector_length(shape), dtype=theano.config.floatX))
rs, out = op(rstate, alpha)
rstream.add_default_update(out, rstate, rs)
return out
示例4: categorical_sampler
def categorical_sampler(rstream, p, draw_shape, dtype="int32"):
if not isinstance(p, theano.Variable):
p = tensor._shared(numpy.asarray(p, dtype=theano.config.floatX))
if p.ndim != 1:
raise NotImplementedError()
if draw_shape.ndim != 1:
raise TypeError()
op = Categorical(
False, tensor.TensorType(broadcastable=(False,) * tensor.get_vector_length(draw_shape), dtype=dtype)
)
rstate = rstream.new_shared_rstate()
new_rstate, out = op(rstate, p, draw_shape)
rstream.add_default_update(out, rstate, new_rstate)
return out
示例5: new_auto_update
def new_auto_update(cls, generator, ndim, dtype, size, seed):
"""
Return a symbolic sample from generator.
cls dictates the random variable (e.g. uniform, normal).
"""
v_size = theano.tensor.as_tensor_variable(size)
if ndim is None:
ndim = get_vector_length(v_size)
self = cls(output_type=CudaNdarrayType((False,) * ndim), seed=seed, destructive=False)
o_gen, sample = self(generator, cast(v_size, "int32"))
sample.generator = generator # for user
sample.update = (generator, o_gen) # for CURAND_RandomStreams
generator.default_update = o_gen # for pfunc uses this attribute
return sample
示例6: _infer_ndim_bcast
def _infer_ndim_bcast(ndim, shape, *args):
"""
Infer the number of dimensions from the shape or the other arguments.
Returns
-------
(int, variable, tuple) triple, where the variable is an integer vector,
and the tuple contains Booleans
The first element returned is the inferred number of dimensions.
The second element is the shape inferred (combining symbolic and
constant informations from shape and args).
The third element is a broadcasting pattern corresponding to that shape.
"""
# Find the minimum value of ndim required by the *args
if args:
args_ndim = max(arg.ndim for arg in args)
else:
args_ndim = 0
if isinstance(shape, (tuple, list)):
# there is a convention that -1 means the corresponding shape of a
# potentially-broadcasted symbolic arg
#
# This case combines together symbolic and non-symbolic shape
# information
shape_ndim = len(shape)
if ndim is None:
ndim = shape_ndim
else:
if shape_ndim != ndim:
raise ValueError('ndim should be equal to len(shape), but\n',
'ndim = %s, len(shape) = %s, shape = %s'
% (ndim, shape_ndim, shape))
bcast = []
pre_v_shape = []
for i, s in enumerate(shape):
if hasattr(s, 'type'): # s is symbolic
bcast.append(False) # todo - introspect further
pre_v_shape.append(s)
else:
if s >= 0:
pre_v_shape.append(tensor.as_tensor_variable(s))
bcast.append((s == 1))
elif s == -1:
n_a_i = 0
for a in args:
# ndim: _ _ _ _ _ _
# ashp: s0 s1 s2 s3
# i
if i >= ndim - a.ndim:
n_a_i += 1
a_i = i + a.ndim - ndim
if not a.broadcastable[a_i]:
pre_v_shape.append(a.shape[a_i])
bcast.append(False)
break
else:
if n_a_i == 0:
raise ValueError((
'Auto-shape of -1 must overlap'
'with the shape of one of the broadcastable'
'inputs'))
else:
pre_v_shape.append(tensor.as_tensor_variable(1))
bcast.append(True)
else:
ValueError('negative shape', s)
# post-condition: shape may still contain both symbolic and
# non-symbolic things
if len(pre_v_shape) == 0:
v_shape = tensor.constant([], dtype='int64')
else:
v_shape = tensor.stack(pre_v_shape)
elif shape is None:
# The number of drawn samples will be determined automatically,
# but we need to know ndim
if not args:
raise TypeError(('_infer_ndim_bcast cannot infer shape without'
' either shape or args'))
template = reduce(lambda a, b: a + b, args)
v_shape = template.shape
bcast = template.broadcastable
ndim = template.ndim
else:
v_shape = tensor.as_tensor_variable(shape)
if v_shape.ndim != 1:
raise TypeError(
"shape must be a vector or list of scalar, got '%s'" % v_shape)
if ndim is None:
ndim = tensor.get_vector_length(v_shape)
bcast = [False] * ndim
if v_shape.ndim != 1:
raise TypeError("shape must be a vector or list of scalar, got '%s'" %
v_shape)
#.........这里部分代码省略.........
示例7: new
def new(cls, rstate, ndim, dtype, size):
v_size = as_tensor_variable(size)
if ndim is None:
ndim = get_vector_length(v_size)
op = cls(TensorType(dtype, (False,) * ndim))
return op(rstate, cast(v_size, "int32"))
示例8: new
def new(cls, rstate, ndim, dtype, size):
v_size = as_tensor_variable(size)
if ndim is None:
ndim = get_vector_length(v_size)
op = cls(GpuArrayType(dtype, (False,) * ndim))
return op(rstate, v_size)