当前位置: 首页>>代码示例>>Python>>正文


Python tensor.ftensor3函数代码示例

本文整理汇总了Python中theano.tensor.ftensor3函数的典型用法代码示例。如果您正苦于以下问题:Python ftensor3函数的具体用法?Python ftensor3怎么用?Python ftensor3使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了ftensor3函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSNLIExample

def testSNLIExample():
    """
    Test an example actually taken from SNLI dataset on LSTM pipeline.
    """
    start = time.time()
    table = EmbeddingTable(dataPath+"glove.6B.50d.txt.gz")
    dataStats= "/Users/mihaileric/Documents/Research/LSTM-NLI/data/" \
               "test_dataStats.json"
    dataJSONFile= "/Users/mihaileric/Documents/Research/LSTM-NLI/data/" \
                  "snli_1.0_test.jsonl"
    premiseTensor, hypothesisTensor = table.convertDataToEmbeddingTensors(
                                                dataJSONFile, dataStats)

    symPremise = T.ftensor3("inputPremise")
    symHypothesis = T.ftensor3("inputHypothesis")

    premiseSent = premiseTensor[:, 0:3, :]
    hypothesisSent = hypothesisTensor[:, 0:3, :]

    network = LSTMP2H(numTimestepsPremise=57, numTimestepsHypothesis=30,
                      dimInput=10, embedData="/Users/mihaileric/Documents/Research/"
                                             "LSTM-NLI/data/glove.6B.50d.txt.gz")
    network.printLSTMP2HParams()

    predictFunc = network.predictFunc(symPremise, symHypothesis)
    labels = network.predict(premiseSent, hypothesisSent, predictFunc)

    for l in labels:
        print "Label: %s" %(l)

    print "Time for evaluation: %f" %(time.time() - start)
开发者ID:BinbinBian,项目名称:LSTM-NLI,代码行数:31,代码来源:functionality.py

示例2: test_pycuda_elemwise_kernel

def test_pycuda_elemwise_kernel():
    x=T.fmatrix('x')
    y=T.fmatrix('y')
    f=theano.function([x,y],x+y, mode=mode_with_gpu)
    print f.maker.env.toposort()
    f2 = theano.function([x,y],x+y, mode=mode_with_gpu.including("local_pycuda_gpu_elemwise_kernel"))
    print f2.maker.env.toposort()

    assert any([ isinstance(node.op, theano.sandbox.cuda.GpuElemwise) for node in f.maker.env.toposort()])
    assert any([ isinstance(node.op, PycudaElemwiseKernelOp) for node in f2.maker.env.toposort()])

    val1 = numpy.asarray(numpy.random.rand(5,5), dtype='float32')
    val2 = numpy.asarray(numpy.random.rand(5,5), dtype='float32')
    #val1 = numpy.ones((5,5))
    #val2 = numpy.arange(25).reshape(5,5)
    assert (f(val1,val2) == f2(val1,val2)).all()
    print f(val1,val2)
    print f2(val1,val2)


    x3=T.ftensor3('x')
    y3=T.ftensor3('y')
    z3=T.ftensor3('y')

    f4 = theano.function([x3,y3,z3],x3*y3+z3, mode=mode_with_gpu.including("local_pycuda_gpu_elemwise_kernel"))
    print f4.maker.env.toposort()
    assert any([ isinstance(node.op, PycudaElemwiseKernelOp) for node in f4.maker.env.toposort()])

    val1 = numpy.random.rand(2,2,2)
    print val1
    print f4(val1,val1,val1)
    assert numpy.allclose(f4(val1,val1,val1),val1*val1+val1)
开发者ID:HaniAlmousli,项目名称:Theano,代码行数:32,代码来源:test_pycuda_example.py

示例3: theano_vars

    def theano_vars(self):

        if self.cond:
            return [T.ftensor3('x'), T.fmatrix('mask'),
                    T.ftensor3('y'), T.fmatrix('label_mask')]
        else:
            return [T.ftensor3('x'), T.fmatrix('mask')]
开发者ID:BinbinBian,项目名称:nips2015_vrnn,代码行数:7,代码来源:iamondb.py

示例4: test_infer_shape

 def test_infer_shape(self):
     # only matrix / matrix is supported
     admat = tensor.ftensor3()
     bdmat = tensor.ftensor3()
     admat_val = my_rand(7, 4, 5)
     bdmat_val = my_rand(7, 5, 3)
     self._compile_and_check([admat, bdmat], [GpuBatchedDot()(admat, bdmat)], [admat_val, bdmat_val], GpuBatchedDot)
开发者ID:cfsmile,项目名称:Theano,代码行数:7,代码来源:test_blas.py

示例5: test_batched_dot

def test_batched_dot():
    a = T.ftensor3('a')
    b = T.ftensor3('b')

    c = my_batched_dot(a, b)

    # Test in with values
    dim1, dim2, dim3, dim4 = 10, 12, 15, 20

    A_shape = (dim1, dim2, dim3)
    B_shape = (dim1, dim3, dim4)
    C_shape = (dim1, dim2, dim4)

    A = np.arange(np.prod(A_shape)).reshape(A_shape).astype(floatX)
    B = np.arange(np.prod(B_shape)).reshape(B_shape).astype(floatX)

    C = c.eval({a: A, b: B})

    # check shape
    assert C.shape == C_shape

    # check content
    C_ = np.zeros((dim1, dim2, dim4))
    for i in range(dim1):
        C_[i] = np.dot(A[i], B[i])
    assert np.allclose(C, C_)
开发者ID:AdityoSanjaya,项目名称:draw,代码行数:26,代码来源:test_attention.py

示例6: _setup_vars

    def _setup_vars(self, sparse_input):
        '''Setup Theano variables for our network.

        Parameters
        ----------
        sparse_input : bool
            Not used -- sparse inputs are not supported for recurrent networks.

        Returns
        -------
        vars : list of theano variables
            A list of the variables that this network requires as inputs.
        '''
        _warn_dimshuffle()

        assert not sparse_input, 'Theanets does not support sparse recurrent models!'

        self.src = TT.ftensor3('src')
        #self.src_mask = TT.imatrix('src_mask')
        self.src_mask = TT.matrix('src_mask')
        self.dst = TT.ftensor3('dst')
        self.labels = TT.imatrix('labels')
        self.weights = TT.matrix('weights')

        if self.weighted:
            return [self.src, self.src_mask, self.dst, self.labels, self.weights]
        return [self.src, self.dst]
开发者ID:masterkeywikz,项目名称:seq2graph,代码行数:27,代码来源:recurrent.py

示例7: cmp

            def cmp(a_shp, b_shp):

                a = numpy.random.randn(* a_shp).astype(numpy.float32)
                b = numpy.random.randn(* b_shp).astype(numpy.float32)

                x = tensor.ftensor3()
                y = tensor.ftensor3()

                f = theano.function([x, y],
                                    batched_dot(x, y),
                                    mode=mode_with_gpu)

                z0 = numpy.asarray(f(a, b))

                ga = cuda_ndarray.CudaNdarray(a)
                gb = cuda_ndarray.CudaNdarray(b)

                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)
                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)

                unittest_tools.assert_allclose(z0, z_test)
                unittest_tools.assert_allclose(z1, z_test)
开发者ID:ChinaQuants,项目名称:Theano,代码行数:28,代码来源:test_blas.py

示例8: random_search_gpu

def random_search_gpu(
    modal_names, train_probs, val_probs,
    target_train, target_val, numpy_rng, n_iter=400):

    n_modal = train_probs.shape[0]
    n_cls = train_probs.shape[2]
    
    # sample random weights and normalize so the modalities sum to 1
    # for each class
    
    weight_samples = T.ftensor3('weight_samples')
    probs = T.ftensor3('probs')
    targets = T.ivector('targets')
    preds = T.argmax(
        T.sum(probs.dimshuffle('x',0,1,2) * weight_samples.dimshuffle(0,1,'x',2), axis=1),
        axis=2)
    accs = T.mean(T.eq(preds, targets.dimshuffle('x',0)), axis=1)
    best_index = T.argmax(accs)
    best_acc = accs[best_index]
    best_weights = weight_samples[best_index]
    print 'compiling functtion'
    fn = theano.function([weight_samples, probs, targets],
        [best_weights, best_index, best_acc])
    print 'done'
    weight_samples_np = numpy_rng.rand(n_iter, n_modal, n_cls).astype(np.float32)
    weight_samples_np /= weight_samples_np.sum(1)[:, None, :]
    
    return fn(weight_samples_np, val_probs, target_val)
开发者ID:OuYag,项目名称:Emotion-Recognition-RNN,代码行数:28,代码来源:random_search.py

示例9: test_attention_dot_does_not_crash

def test_attention_dot_does_not_crash():
  Z = T.ftensor3('Z')
  B = T.ftensor3('B') #base
  W_re = T.fmatrix('W_re')
  W_att_quadr = T.fmatrix("W_att_quadr")
  W_att_in = T.fmatrix('W_att_in')
  c = T.fmatrix('c') #initial state
  y0 = T.fmatrix('y0') #initial activation
  i = T.matrix('i',dtype='int8')
  Y, H, d = LSTMCustomDotAttentionOpNoInplaceInstance(Z, c, y0, i, W_re, B, W_att_in, W_att_quadr)

  f = theano.function(inputs=[Z, B, c, y0, i, W_re, W_att_in, W_att_quadr], outputs=Y)

  n_B = 8
  n_T = 5
  n_batch = 4
  n_cells = 8
  numpy.random.seed(1234)
  Z_val = numpy.random.ranf((n_T,n_batch,4*n_cells)).astype('float32')
  B_val = numpy.random.ranf((n_B,n_batch,n_cells)).astype('float32')
  W_re_val = numpy.random.ranf((n_cells, 4 * n_cells)).astype('float32')
  W_att_quadr_val = numpy.eye(n_B).astype('float32')
  W_att_in_val = numpy.random.ranf((n_cells, 4 * n_cells)).astype('float32')
  c_val = numpy.random.ranf((n_batch, n_cells)).astype('float32')
  y0_val = numpy.random.ranf((n_batch, n_cells)).astype('float32')
  #i_val = numpy.ones((n_T, n_batch), dtype='int8')
  i_val = numpy.array([[1,1,1,1,1], [0,0,1,1,1], [0,0,1,1,1], [0,0,1,0,0]], dtype='int8').T

  Y_val = numpy.asarray(f(Z_val, B_val, c_val, y0_val, i_val, W_re_val, W_att_in_val, W_att_quadr_val))
  #print Y_val
  print("success")
开发者ID:rwth-i6,项目名称:returnn,代码行数:31,代码来源:test_OpLSTMCustom.py

示例10: make_node

 def make_node(self, x, x2, x3, x4, x5):
     # check that the theano version has support for __props__.
     # This next line looks like it has a typo,
     # but it's actually a way to detect the theano version
     # is sufficiently recent to support the use of __props__.
     assert hasattr(self, '_props'), "Your version of theano is too old to support __props__."
     x = tensor.as_tensor_variable(x)
     x2 = tensor.as_tensor_variable(x2)
     x3 = tensor.as_tensor_variable(x3)
     x4 = tensor.as_tensor_variable(x4)
     x5 = tensor.as_tensor_variable(x5)
     
     if prm.att_doc:
         if prm.compute_emb:
             td = tensor.itensor4().type()
         else:
             td = tensor.ftensor4().type()
         tm = tensor.ftensor3().type()
     else:
         if prm.compute_emb:
             td = tensor.itensor3().type()
         else:
             td = tensor.ftensor3().type()
         tm = tensor.fmatrix().type()
     return theano.Apply(self, [x,x2,x3,x4,x5], [td, tm, \
                                        tensor.fmatrix().type(), tensor.ivector().type()])
开发者ID:domarps,项目名称:WebNav,代码行数:26,代码来源:op_link.py

示例11: test_multiple_inputs

def test_multiple_inputs():
  X = T.ftensor3('X')
  X2 = T.ftensor3('X')
  W = T.fmatrix('W')
  V_h = T.fmatrix('V_h')
  b = T.fvector('b')
  c = T.fmatrix('c') #initial state
  i = T.matrix('i',dtype='int8')
  X_val_mat0 = 0.1 * numpy.array([[1,2,3], [4,5,6]], dtype='float32')
  X_val_mat1 = 0.1 * numpy.array([[5,1,8], [7,0,1]], dtype='float32')
  X_val_mat2 = 0.1 * numpy.array([[2,1,1], [-7,0,-1]], dtype='float32')
  X_val = numpy.zeros((3,2,3), dtype='float32')
  X_val[0, :, :] = X_val_mat0
  X_val[1, :, :] = X_val_mat1
  X_val[2, :, :] = X_val_mat2
  X_val2 = numpy.zeros_like(X_val)
  #should be divisable by 4 for lstm, attention: note the .T
  W_val = 0.1 * numpy.array([[3,1,2], [4,8,0], [7,7,1], [4,2,-5],
                             [6,-1,-2], [-4,8,0], [-7,2,1], [4,-2,-5],
                             [6,5,-2], [-4,8,-6], [-7,3,-1], [4,2,-5]], dtype='float32').T
  #(for lstm) size 1/4th
  V_h_val = 0.1 * numpy.array([[1,3,5], [2,-1,-1], [4, 8,-5], [0,-2,3],
                               [7,7,7], [1,2,3], [5,2,1], [-4,8,-4],
                               [-3,7,-7], [2,-2,-3], [-5,2,1], [-4,-5,-4]],
                              dtype='float32').T
  b_val = 0.1 * numpy.array([1,2,3,4,5,6,7,8,9,10,11,12], dtype='float32')
  c_val = numpy.zeros((2,3), dtype='float32')
  i_val = numpy.ones((3,2),dtype='int8')

  Z1, H1, d1 = LSTMOp2Instance(V_h, c, b, i, X, W)
  Z2, H2, d2 = LSTMOp2Instance(V_h, c, b, i, X, X2, W, W)
  Z3, H3, d3 = LSTMOp2Instance(V_h, c, b, i) # no inputs!
  DX1 = T.grad(Z1.sum(), X)
  DW1 = T.grad(Z1.sum(), W)
  DV_h1 = T.grad(Z1.sum(), V_h)
  Db1 = T.grad(Z1.sum(), b)
  Dc1 = T.grad(Z1.sum(), c)

  DX2 = T.grad(Z2.sum(), X)
  DW2 = T.grad(Z2.sum(), W)
  DV_h2 = T.grad(Z2.sum(), V_h)
  Db2 = T.grad(Z2.sum(), b)
  Dc2 = T.grad(Z2.sum(), c)

  DV_h3 = T.grad(Z3.sum(), V_h)

  f = theano.function(inputs=[X, W, V_h, c, b, i], outputs=[Z1, DX1, DW1])
  g = theano.function(inputs=[X, X2, W, V_h, c, b, i], outputs=[Z2, DX2, DW2])
  h = theano.function(inputs=[V_h, c, b, i], outputs=[Z3, DV_h3])
  h_res = [numpy.asarray(A, dtype='float32') for A in h(V_h_val, c_val, b_val, i_val)]
  #print h_res[0], h_res[1]
  f_res = [numpy.asarray(A, dtype='float32') for A in f(X_val, W_val, V_h_val, c_val, b_val, i_val)]
  g_res = [numpy.asarray(A, dtype='float32') for A in g(X_val, X_val2, W_val, V_h_val, c_val, b_val, i_val)]
  for A1, A2 in zip(f_res, g_res):
    assert numpy.allclose(A1, A2)
  #print f_res[0], g_res[0]

  print "success"
开发者ID:rwth-i6,项目名称:returnn,代码行数:58,代码来源:test_FastLSTMLayer.py

示例12: test_outer_infershape

    def test_outer_infershape(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        self._compile_and_check(
            [o, x, y, xIdx, yIdx], [self.outer_op(o, x, y, xIdx, yIdx)], self.outer_data(), self.outer_class
        )
开发者ID:poolio,项目名称:Theano,代码行数:10,代码来源:test_blocksparse.py

示例13: test_attention_time_gauss

def test_attention_time_gauss():
  n_T = 4
  n_batch = 2
  n_inp_dim = 3
  n_cells = 5
  n_B = 5

  custom_op = get_attention(RecurrentTransform.AttentionTimeGauss,
                            n_out=n_cells, n_batches=n_batch, n_input_t=n_B, n_input_dim=n_inp_dim)
  att = custom_op.recurrent_transform

  Z_val = numpy.random.ranf((n_T,n_batch,4*n_cells)).astype('float32')
  W_re_val = numpy.random.ranf((n_cells, 4 * n_cells)).astype('float32')
  W_att_quadr_val = numpy.eye(n_B).astype('float32')
  W_att_in_val = numpy.random.ranf((n_cells, 4 * n_cells)).astype('float32')
  B_val = numpy.random.ranf((n_B,n_batch,n_cells)).astype('float32')
  c_val = numpy.random.ranf((n_batch, n_cells)).astype('float32')
  y0_val = numpy.random.ranf((n_batch, n_cells)).astype('float32')
  i_val = numpy.ones((n_T, n_batch), dtype='int8')

  Z = T.ftensor3('Z')
  B = T.ftensor3('B') #base
  W_re = T.fmatrix('W_re')
  W_att_quadr = T.fmatrix("W_att_quadr")
  W_att_in = T.fmatrix('W_att_in')
  c = T.fmatrix('c') #initial state
  y0 = T.fmatrix('y0') #initial activation
  i = T.matrix('i',dtype='int8')
  t0 = T.fvector('t0')
  custom_vars = att.get_sorted_custom_vars()
  initial_state_vars = att.get_sorted_state_vars_initial()
  custom_op_inputs = [Z, c, y0, i, W_re] + custom_vars + initial_state_vars
  print("input args num:", len(custom_op_inputs))
  print("input args:", custom_op_inputs)
  custom_op_outputs = custom_op(*custom_op_inputs)
  print("output args num:", len(custom_op_outputs))
  custom_op_outputs = [cuda.host_from_gpu(v) for v in custom_op_outputs]
  f = theano.function(inputs=[Z, c, y0, i, W_re], outputs=custom_op_outputs)

  res = f(Z_val, c_val, y0_val, i_val, W_re_val)

  #print res
  # res: (output) Y, (gates and cell state) H, (final cell state) d, state vars sequences
  (Y, H, d), state_var_seqs = res[:3], res[3:]

  # print "running custom dumped data"
  # custom_op_inputs = [theano.shared(numpy.load("../op.i.%i" % i)) for i in range(12)]
  # custom_op_outputs = custom_op(*custom_op_inputs)
  # custom_op_outputs = [cuda.host_from_gpu(v) for v in custom_op_outputs]
  # f = theano.function(inputs=[], outputs=custom_op_outputs)
  # res = f()

  print(res)

  assert False
开发者ID:rwth-i6,项目名称:returnn,代码行数:55,代码来源:test_OpLSTMCustom.py

示例14: fail

        def fail(a_shp, b_shp):

            a=numpy.random.randn(*a_shp).astype(numpy.float32)
            b=numpy.random.randn(*b_shp).astype(numpy.float32)

            x=tensor.ftensor3()
            y=tensor.ftensor3()

            f=theano.function([x,y], batched_dot(x,y), mode=mode_with_gpu)

            z = f(a,b)
开发者ID:daxlab,项目名称:Theano,代码行数:11,代码来源:test_blas.py

示例15: test_tensor3_roc_auc_scores

def test_tensor3_roc_auc_scores():
    true = np.random.binomial(n=1, p=.5, size=(20, 30, 40)).astype('float32')
    predicted = np.random.random((20, 30, 40)).astype('float32')
    yt, yp = T.ftensor3('yt'), T.ftensor3('yp')
    refscore = tmetrics.classification.last_axis_roc_auc_scores(true, predicted)
    roc_auc_scores = tmetrics.classification.roc_auc_scores(yt, yp)
    f = theano.function([yt, yp], roc_auc_scores)
    score = f(true, predicted)
    print 'refscore'
    print refscore
    print 'score'
    print score
    assert np.allclose(refscore, score, equal_nan=True)
开发者ID:jonathanstrong,项目名称:tmetrics,代码行数:13,代码来源:tmetrics_tests.py


注:本文中的theano.tensor.ftensor3函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。