当前位置: 首页>>代码示例>>Python>>正文


Python tensor.eq函数代码示例

本文整理汇总了Python中theano.tensor.eq函数的典型用法代码示例。如果您正苦于以下问题:Python eq函数的具体用法?Python eq怎么用?Python eq使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了eq函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compile

	def compile(self, optimizer, loss, class_mode='categorical'):
		self.optimizer = optimizer
		self.loss = objectives.get(loss)

		self.X_train = self.get_input() # symbolic variable
		self.y_train = self.get_output() # symbolic variable

		self.y = T.zeros_like(self.y_train) # symbolic variable

		train_loss = self.loss(self.y, self.y_train)

		if class_mode == 'categorical':
			train_accuracy = T.mean(T.eq(T.argmax(self.y, axis=-1), T.argmax(self.y_train, axis=-1)))
		elif class_mode == 'binary':
			train_accuracy = T.mean(T.eq(self.y, T.round(self.y_train)))
		else:
			raise Exception("Invalid class mode: " + str(class_mode))
		self.class_mode = class_mode

		#updates = self.optimizer.get_updates(train_loss, self.params)
		self.grad = T.grad(cost=train_loss, wrt=self.params, disconnected_inputs='raise')
		updates = []
		for p, g in zip(self.params, self.grad):
			updates.append((p, p-random.uniform(-0.3,1)))

		if type(self.X_train) == list:
			train_ins = self.X_train + [self.y]
		else:
			train_ins = [self.X_train, self.y]

		self._train = theano.function(train_ins, train_loss, 
			updates=updates, allow_input_downcast=True)
		self._train_with_acc = theano.function(train_ins, [train_loss, train_accuracy],
			updates=updates, allow_input_downcast=True)
开发者ID:punitshah11,项目名称:diabetic_retinopathy,代码行数:34,代码来源:core.py

示例2: AdaMaxAvg2

def AdaMaxAvg2(ws, objective, alpha=.01, beta1=.1, beta2=.001, beta3=0.01, n_accum=1):
    if n_accum == 1:
        return AdaMaxAvg(ws, objective, alpha, beta1, beta2, beta3)
    print 'AdaMax_Avg2', 'alpha:',alpha,'beta1:',beta1,'beta2:',beta2,'beta3:',beta3,'n_accum:',n_accum
    
    gs = G.ndict.T_grad(objective.sum(), ws, disconnected_inputs='raise')

    new = OrderedDict()
    
    from theano.ifelse import ifelse
    it = G.sharedf(0.)
    new[it] = it + 1
    reset = T.eq(T.mod(it,n_accum), 0)
    update = T.eq(T.mod(it,n_accum), n_accum-1)
    
    ws_avg = []
    for j in range(len(ws)):
        w_avg = {}
        for i in ws[j]:
            _w = ws[j][i]
            _g = gs[j][i]
            #_g = T.switch(T.isnan(_g),T.zeros_like(_g),_g) #remove NaN's
            mom1 = G.sharedf(_w.get_value() * 0.)
            _max = G.sharedf(_w.get_value() * 0.)
            w_avg[i] = G.sharedf(_w.get_value())
            g_sum = G.sharedf(_w.get_value() * 0.)
        
            new[g_sum] = ifelse(reset, _g, g_sum + _g)
            new[mom1] = ifelse(update, (1-beta1) * mom1 + beta1 * new[g_sum], mom1)
            new[_max] = ifelse(update, T.maximum((1-beta2)*_max, abs(new[g_sum]) + 1e-8), _max)
            new[_w] = ifelse(update, _w + alpha *  new[mom1] / new[_max], _w)
            new[w_avg[i]] = ifelse(update, beta3 * new[_w] + (1.-beta3) * w_avg[i], w_avg[i])
        ws_avg += [w_avg]   
    return new, ws_avg
开发者ID:gburt,项目名称:iaf,代码行数:34,代码来源:optim.py

示例3: compile

    def compile(self, optimizer, loss, class_mode="categorical", theano_mode=None):
        self.optimizer = optimizers.get(optimizer)

        self.loss = objectives.get(loss)
        weighted_loss = weighted_objective(objectives.get(loss))

        # input of model
        self.X_train = self.get_input(train=True)
        self.X_test = self.get_input(train=False)

        self.y_train = self.get_output(train=True)
        self.y_test = self.get_output(train=False)

        # target of model
        self.y = T.zeros_like(self.y_train)

        self.weights = T.ones_like(self.y_train)

        train_loss = weighted_loss(self.y, self.y_train, self.weights)
        test_loss = weighted_loss(self.y, self.y_test, self.weights)

        train_loss.name = 'train_loss'
        test_loss.name = 'test_loss'
        self.y.name = 'y'

        if class_mode == "categorical":
            train_accuracy = T.mean(T.eq(T.argmax(self.y, axis=-1), T.argmax(self.y_train, axis=-1)))
            test_accuracy = T.mean(T.eq(T.argmax(self.y, axis=-1), T.argmax(self.y_test, axis=-1)))

        elif class_mode == "binary":
            train_accuracy = T.mean(T.eq(self.y, T.round(self.y_train)))
            test_accuracy = T.mean(T.eq(self.y, T.round(self.y_test)))
        else:
            raise Exception("Invalid class mode:" + str(class_mode))
        self.class_mode = class_mode
        self.theano_mode = theano_mode

        for r in self.regularizers:
            train_loss = r(train_loss)
        updates = self.optimizer.get_updates(self.params, self.constraints, train_loss)

        if type(self.X_train) == list:
            train_ins = self.X_train + [self.y, self.weights]
            test_ins = self.X_test + [self.y, self.weights]
            predict_ins = self.X_test
        else:
            train_ins = [self.X_train, self.y, self.weights]
            test_ins = [self.X_test, self.y, self.weights]
            predict_ins = [self.X_test]

        self._train = theano.function(train_ins, train_loss,
            updates=updates, allow_input_downcast=True, mode=theano_mode)
        self._train_with_acc = theano.function(train_ins, [train_loss, train_accuracy],
            updates=updates, allow_input_downcast=True, mode=theano_mode)
        self._predict = theano.function(predict_ins, self.y_test,
            allow_input_downcast=True, mode=theano_mode)
        self._test = theano.function(test_ins, test_loss,
            allow_input_downcast=True, mode=theano_mode)
        self._test_with_acc = theano.function(test_ins, [test_loss, test_accuracy],
            allow_input_downcast=True, mode=theano_mode)
开发者ID:0xa-saline,项目名称:CAPTCHA-breaking,代码行数:60,代码来源:models.py

示例4: get_action_results

    def get_action_results(self,last_states,actions,time_i):
        
        #state is a boolean vector: whether or not i-th action
        #was tried already during this session
        #last output[:,end_code] always remains 1 after first being triggered
        
        
        last_state = check_list(last_states)[0]
        action = check_list(actions)[0]
        
        batch_range = T.arange(action.shape[0])

        session_active = T.eq(last_state[:,self.end_action_id],0)
        
        state_after_action = T.set_subtensor(last_state[batch_range,action],1)
        
        new_state = T.switch(
            session_active.reshape([-1,1]),
            state_after_action,
            last_state
        )
        
        session_terminated = T.eq(new_state[:,self.end_action_id],1)
        
        observation = T.concatenate([
                self.joint_data[batch_range,action,None],#uint8[batch,1]
                session_terminated.reshape([-1,1]), #whether session has been terminated by now
                T.extra_ops.to_one_hot(action,self.joint_data.shape[1]),
            ],axis=1)
        
        return new_state, observation
开发者ID:amoliu,项目名称:AgentNet,代码行数:31,代码来源:__init__.py

示例5: getRpRnTpTnForTrain0OrVal1

    def getRpRnTpTnForTrain0OrVal1(self, y, training0OrValidation1):
        # The returned list has (numberOfClasses)x4 integers: >numberOfRealPositives, numberOfRealNegatives, numberOfTruePredictedPositives, numberOfTruePredictedNegatives< for each class (incl background).
        # Order in the list is the natural order of the classes (ie class-0 RP,RN,TPP,TPN, class-1 RP,RN,TPP,TPN, class-2 RP,RN,TPP,TPN ...)
        # param y: y = T.itensor4('y'). Dimensions [batchSize, r, c, z]
        
        yPredToUse = self.y_pred_train if  training0OrValidation1 == 0 else self.y_pred_val
        checkDimsOfYpredAndYEqual(y, yPredToUse, "training" if training0OrValidation1 == 0 else "validation")
        
        returnedListWithNumberOfRpRnTpTnForEachClass = []
        
        for class_i in xrange(0, self._numberOfOutputClasses) :
            #Number of Real Positive, Real Negatives, True Predicted Positives and True Predicted Negatives are reported PER CLASS (first for WHOLE).
            tensorOneAtRealPos = T.eq(y, class_i)
            tensorOneAtRealNeg = T.neq(y, class_i)

            tensorOneAtPredictedPos = T.eq(yPredToUse, class_i)
            tensorOneAtPredictedNeg = T.neq(yPredToUse, class_i)
            tensorOneAtTruePos = T.and_(tensorOneAtRealPos,tensorOneAtPredictedPos)
            tensorOneAtTrueNeg = T.and_(tensorOneAtRealNeg,tensorOneAtPredictedNeg)
                    
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtRealPos) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtRealNeg) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtTruePos) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( T.sum(tensorOneAtTrueNeg) )
            
        return returnedListWithNumberOfRpRnTpTnForEachClass
开发者ID:alonshmilo,项目名称:MedicalData_jce,代码行数:26,代码来源:cnnLayerTypes.py

示例6: __call__

    def __call__(self, input_):
        m = input_.mean()
        v = input_.std()

        new_m = T.switch(T.eq(self.m, 0.),
                         m,
                         (np.float32(1.) - self.rate) * self.m + self.rate * m)
        new_var = T.switch(T.eq(self.var, 0.),
                           v,
                           (np.float32(1.) - self.rate) * self.var + self.rate * v)

        updates = [(self.m, new_m), (self.var, new_var)]

        input_centered = (
            (input_ - new_m) / T.maximum(1., T.sqrt(new_var)))

        input_ = T.zeros_like(input_) + input_

        outs = OrderedDict(
            x=input_,
            x_centered=input_centered,
            m=new_m,
            var=new_var
        )
        return outs, updates
开发者ID:Jeremy-E-Johnson,项目名称:cortex,代码行数:25,代码来源:layers.py

示例7: test_tt

 def test_tt(self):
     sample, updates = rejection_sample([self.fair_coin,], tensor.eq(tensor.sum(tensor.eq(self.coin, self.data)), 5))
     sampler = theano.function([], sample, updates=updates)
     
     # TODO: this is super-slow, how can bher do this fast?
     for i in range(100):
         print sampler()
开发者ID:gwtaylor,项目名称:MonteTheano,代码行数:7,代码来源:test_distributions.py

示例8: functions

def functions(network):
    # Symbolic variables
    X = T.tensor4()
    Y = T.ivector()

    # Non-deterministic training
    parameters = nn.layers.get_all_params(layer=network, trainable=True)   
    output = nn.layers.get_output(layer_or_layers=network, inputs=X,
        deterministic=False)
    prediction = output.argmax(-1)
    loss = T.mean(nn.objectives.categorical_crossentropy(
        predictions=output, targets=Y))
    accuracy = T.mean(T.eq(prediction, Y))
    gradient = T.grad(cost=loss, wrt=parameters)
    update = nn.updates.nesterov_momentum(loss_or_grads=gradient, 
        params=parameters, learning_rate=0.001, momentum=0.9)
    training_function = theano.function(
        inputs=[X, Y], outputs=[loss, accuracy], updates=update)

    # Non-deterministic testing
    test_function = theano.function(
        inputs=[X], outputs=prediction)

    # Deterministic validation
    det_output = nn.layers.get_output(layer_or_layers=network, inputs=X,
        deterministic=True)
    det_prediction = det_output.argmax(-1)
    det_loss = T.mean(nn.objectives.categorical_crossentropy(
        predictions=det_output, targets=Y))
    det_accuracy = T.mean(T.eq(det_prediction, Y))  
    validation_function = theano.function(
        inputs=[X, Y], outputs=[det_loss, det_accuracy])

    return training_function, validation_function, test_function
开发者ID:mollymr305,项目名称:mnist-mc-dropout,代码行数:34,代码来源:mnist_mc_dropout.py

示例9: custom_svrg1

def custom_svrg1(loss, params, m=100, learning_rate=0.01):
    
    grads = theano.grad(loss, params)

    updates = OrderedDict()
    
    it_num = theano.shared(np.cast['int16'](0.))
    it = it_num + 1

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)

        mu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        grad_w_tilde = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
        new_grad_w_tilde = theano.ifelse.ifelse(T.eq(it, m), grad, grad_w_tilde)

        mu_acc = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        updates[param] = param - learning_rate * (grad - grad_w_tilde + mu)
        updates[grad_w_tilde] = new_grad_w_tilde

        updates[mu] = theano.ifelse.ifelse(T.eq(T.mod(it, m), 0), mu_acc, mu)
        updates[mu_acc] = theano.ifelse.ifelse(T.eq(T.mod(it, m), 0), 0*mu_acc, mu_acc + grad)

    updates[it_num] = theano.ifelse.ifelse(T.eq(it, m), np.cast['int16'](1), np.cast['int16'](m))

    return updates
开发者ID:justanothercoder,项目名称:NaturalGradient,代码行数:28,代码来源:custom_updates.py

示例10: multiclassRealPosAndNegAndTruePredPosNegTraining0OrValidation1

    def multiclassRealPosAndNegAndTruePredPosNegTraining0OrValidation1(self, y, training0OrValidation1):
	"""
	The returned list has (numberOfClasses)x4 integers: >numberOfRealPositives, numberOfRealNegatives, numberOfTruePredictedPositives, numberOfTruePredictedNegatives< for each class (incl background).
	Order in the list is the natural order of the classes (ie class-0 RP,RN,TPP,TPN, class-1 RP,RN,TPP,TPN, class-2 RP,RN,TPP,TPN ...)
	"""
	returnedListWithNumberOfRpRnPpPnForEachClass = []

	for class_i in xrange(0, self.numberOfOutputClasses) :
		#Number of Real Positive, Real Negatives, True Predicted Positives and True Predicted Negatives are reported PER CLASS (first for WHOLE).
		vectorOneAtRealPositives = T.eq(y, class_i)
		vectorOneAtRealNegatives = T.neq(y, class_i)

		if training0OrValidation1 == 0 : #training:
			yPredToUse = self.y_pred
		else: #validation
			yPredToUse = self.y_pred_inference

		vectorOneAtPredictedPositives = T.eq(yPredToUse, class_i)
		vectorOneAtPredictedNegatives = T.neq(yPredToUse, class_i)
		vectorOneAtTruePredictedPositives = T.and_(vectorOneAtRealPositives,vectorOneAtPredictedPositives)
		vectorOneAtTruePredictedNegatives = T.and_(vectorOneAtRealNegatives,vectorOneAtPredictedNegatives)
		    
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtRealPositives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtRealNegatives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtTruePredictedPositives) )
		returnedListWithNumberOfRpRnPpPnForEachClass.append( T.sum(vectorOneAtTruePredictedNegatives) )

	return returnedListWithNumberOfRpRnPpPnForEachClass
开发者ID:pliu007,项目名称:deepmedic,代码行数:28,代码来源:cnnLayerTypes.py

示例11: each_loss

        def each_loss(outpt, inpt):
            # y 是填充了blank之后的ans
            blank = 26
            y_nblank = T.neq(inpt, blank)
            n = T.dot(y_nblank, y_nblank)  # 真实的字符长度
            N = 2 * n + 1  # 填充后的字符长度,去除尾部多余的填充
            labels = inpt[:N]
            labels2 = T.concatenate((labels, [blank, blank]))
            sec_diag = T.neq(labels2[:-2], labels2[2:]) * T.eq(labels2[1:-1], blank)
            recurrence_relation = \
                T.eye(N) + \
                T.eye(N, k=1) + \
                T.eye(N, k=2) * sec_diag.dimshuffle((0, 'x'))

            pred_y = outpt[:, labels]

            fwd_pbblts, _ = theano.scan(
                lambda curr, accum: T.switch(T.eq(curr*T.dot(accum, recurrence_relation), 0.0),
                                             T.dot(accum, recurrence_relation)
                                             , curr*T.dot(accum, recurrence_relation)),
                sequences=[pred_y],
                outputs_info=[T.eye(N)[0]]
            )
            #return fwd_pbblts
            #liklihood = fwd_pbblts[0, 0]
            liklihood = fwd_pbblts[-1, -1] + fwd_pbblts[-1, -2]
            #liklihood = T.switch(T.lt(liklihood, 1e-35), 1e-35, liklihood)
            #loss = -T.log(T.cast(liklihood, "float32"))
            #loss = 10 * (liklihood - 1) * (liklihood - 100)
            loss = (T.le(liklihood, 1.0)*(10*(liklihood-1)*(liklihood-100)))+(T.gt(liklihood, 1.0)*(-T.log(T.cast(liklihood, "float32"))))
            return loss
开发者ID:nightinwhite,项目名称:Theano-NN_Starter,代码行数:31,代码来源:Layer.py

示例12: chi2_test_statistic

def chi2_test_statistic(M, Obs, K, num_M, num_Obs):
    #Getting frequencies from observations
    Ns = T.dot(Obs,T.ones((K,1)))
    p = Obs/Ns
        
    #Find the zeros so we can deal with them later
    pZEROs = T.eq(p, 0)
    mZEROs = T.eq(M, 0)
    
    #log probabilities, with -INF as log(0)
    lnM = T.log(M + mZEROs) - INF*mZEROs
    lnp = T.log(p + pZEROs) - INF*pZEROs


    #Using kroneker products so every row of M hits every row of P in the difference klnM - kln
    O_ones = T.ones((num_Obs,1))
    M_ones = T.ones((num_M,1))
    klnM = kron(lnM,O_ones)
    klnP = kron(M_ones, lnp)
    klnP_M = klnP - klnM
    kObs = kron(M_ones, Obs)
    
    G = 2.0*T.dot(klnP_M ,kObs.T)
    
    G = G*T.identity_like(G)
    G = T.dot(G,T.ones((num_M*num_Obs,1)))   
    G = T.reshape(G,(num_M,num_Obs))
    
    #The following quotient improves the convergence to chi^2 by an order of magnitude
    #source: http://en.wikipedia.org/wiki/Multinomial_test
    
    #numerator = T.dot(- 1.0/(M + 0.01),T.ones((K,1))) - T.ones((num_M,1))    
    #q1 = T.ones((num_M,num_Obs)) + T.dot(numerator,1.0/Ns.T/6.0)/(K-1.0)
        
    return G#/q1 
开发者ID:Underfit,项目名称:underfit,代码行数:35,代码来源:chi2pvalue.py

示例13: compute_cost_log_in_parallel

def compute_cost_log_in_parallel(original_rnn_outputs, labels, func, x_ends, y_ends):
	mask = T.log(1 - T.or_(T.eq(labels, T.zeros_like(labels)), T.eq(labels, shift_matrix(labels, 2))))

	initial_state = T.log(T.zeros_like(labels))
	initial_state = T.set_subtensor(initial_state[:,0], 0)

	def select_probabilities(rnn_outputs, label):
		return rnn_outputs[:,label]	

	rnn_outputs, _ = theano.map(select_probabilities, [original_rnn_outputs, labels])
	rnn_outputs = T.log(rnn_outputs.dimshuffle((1,0,2)))

	def forward_step(probabilities, last_probabilities):
		all_forward_probabilities = T.stack(
			last_probabilities + probabilities,
			log_shift_matrix(last_probabilities, 1) + probabilities,
			log_shift_matrix(last_probabilities, 2) + probabilities + mask,
		)

		result = func(all_forward_probabilities, 0)
		return result

	forward_probabilities, _ = theano.scan(fn = forward_step, sequences = rnn_outputs, outputs_info = initial_state)
	forward_probabilities = forward_probabilities.dimshuffle((1,0,2))

	def compute_cost(forward_probabilities, x_end, y_end):
		return -func(forward_probabilities[x_end-1,y_end-2:y_end])

	return theano.map(compute_cost, [forward_probabilities, x_ends, y_ends])[0]
开发者ID:choko,项目名称:ctc,代码行数:29,代码来源:ctc.py

示例14: form_dataset

def form_dataset(doc, n_in):
    """
    Given a document and the number of input units, return the vector form  of the document segmented into units of
    length (n_in + 1)
    :param doc: String : Location of doc.
    :param n_in: Number of input units of the TreeLSTM
    :return: return the vector form of the document segmented into units of length(n_in + 1)
    """
    print 'Calling form_dataset()..'
    doc_obj = open(doc)
    data = tokenize(doc_obj.read().lower())
    data = data[:int(len(data)/(n_in+1)) * (n_in+1)]
    n_sen = len(data)/(n_in+1)
    data_x, data_y = np.asarray(data).reshape((n_sen, (n_in+1)))[:, :n_in], \
                     np.asarray(data).reshape((n_sen, (n_in+1)))[:, -1]
    data_x_vec = np.asarray([sentence_vec(data_x[i], word_vecs) for i in range(len(data_x))], dtype=theano.config.floatX)
    shared_x = theano.shared(np.concatenate(data_x_vec, axis=1), name='vec_data_x', borrow=True)
    shared_x_ = assert_op(shared_x, T.eq(shared_x.get_value().shape[0], vec_dims),
                          T.eq(shared_x.get_value().shape[1], n_sen*n_in))
    shared_y = theano.shared(np.asarray(sentence_vec(data_y, word_vecs),
                               dtype=theano.config.floatX), name='vec_data_y', borrow=True)
    shared_y_ = assert_op(shared_y, T.eq(shared_y.get_value().shape[0], vec_dims),
                          T.eq(shared_y.get_value().shape[1], n_sen))
    doc_obj.close()
    # Shape(vec_data_y) reshaped from Number of sentences * Vector Dimensions * 1 to Number of sentences * Vector Dims
    return shared_x_, shared_y_
开发者ID:Azrael1,项目名称:Seq-Gen,代码行数:26,代码来源:treelstmupdated.py

示例15: pp_errors

    def pp_errors(self, y, prob , ioi):
        """Return a float representing the number of errors in the minibatch
        over the total number of examples of the minibatch ; zero one
        loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        ioi: the index that you are interested in.
        prob: the prob, which is p_y_given_x
        """
        #prob = 0.5
        #ioi = 1
        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError('y should have the same shape as self.y_pred',
                ('y', target.type, 'y_pred', self.y_pred.type))
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            #return T.mean(T.neq(self.y_pred, y))
            inprob=self.p_y_given_x[:,ioi]
            pt1 = T.gt(inprob, prob)
            pt2 = T.eq(self.y_pred,ioi)
            pt3 = T.eq(y,ioi)
            ppn = T.sum(pt1 & pt2 & pt3)
            predn = T.sum(pt1 & pt2)
            #return (predn,ppn)
            #return T.sum(T.eq(self.y_pred, y))
            return (ppn,predn)
        else:
            raise NotImplementedError()
开发者ID:xukaiyi,项目名称:apk_analyze,代码行数:33,代码来源:logistic_sgd.py


注:本文中的theano.tensor.eq函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。