当前位置: 首页>>代码示例>>Python>>正文


Python tensor.argsort函数代码示例

本文整理汇总了Python中theano.tensor.argsort函数的典型用法代码示例。如果您正苦于以下问题:Python argsort函数的具体用法?Python argsort怎么用?Python argsort使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了argsort函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _step

 def _step(x, k, max_seq_len):
     tmp = x[
         T.arange(x.shape[0])[:, np.newaxis, np.newaxis],
         T.sort(T.argsort(x, axis=1)[:, -k:, :], axis=1),
         T.arange(x.shape[2])[np.newaxis, np.newaxis,:],
     ]
     return T.concatenate([tmp, T.zeros([x.shape[0], max_seq_len-k, x.shape[2]])], axis=1)
开发者ID:psy2013GitHub,项目名称:theano_prototype,代码行数:7,代码来源:KMaxPooling.py

示例2: link

    def link(self, input):
        self.input = input

        # select the lines where we apply k-max pooling
        neighbors_for_pooling = TSN.images2neibs(
            ten4=self.input,
            neib_shape=(self.input.shape[2], 1),  # we look the max on every dimension
            mode='valid'  # 'ignore_borders'
        )

        neighbors_arg_sorted = T.argsort(neighbors_for_pooling, axis=1)
        k_neighbors_arg = neighbors_arg_sorted[:, -self.k_max:]
        k_neighbors_arg_sorted = T.sort(k_neighbors_arg, axis=1)

        ii = T.repeat(T.arange(neighbors_for_pooling.shape[0]), self.k_max)
        jj = k_neighbors_arg_sorted.flatten()
        flattened_pooled_out = neighbors_for_pooling[ii, jj]

        pooled_out_pre_shape = T.join(
            0,
            self.input.shape[:-2],
            [self.input.shape[3]],
            [self.k_max]
        )
        self.output = flattened_pooled_out.reshape(
            pooled_out_pre_shape,
            ndim=self.input.ndim
        ).dimshuffle(0, 1, 3, 2)
        return self.output
开发者ID:geshiming,项目名称:UltraDeep,代码行数:29,代码来源:pooling.py

示例3: keep_max

def keep_max(input, theta, k, sent_mask):
    sig_input = T.nnet.sigmoid(T.dot(input, theta))
    sent_mask = sent_mask.dimshuffle(0, 'x', 1, 'x')
    sig_input = sig_input * sent_mask
    #sig_input = T.dot(input, theta)
    if k == 0:
        result = input * T.addbroadcast(sig_input, 3)
        return result, sig_input

    # get the sorted idx
    sort_idx = T.argsort(sig_input, axis=2)
    k_max_ids = sort_idx[:,:,-k:,:]
    dim0, dim1, dim2, dim3 = k_max_ids.shape
    batchids = T.repeat(T.arange(dim0), dim1*dim2*dim3)
    mapids = T.repeat(T.arange(dim1), dim2*dim3).reshape((1, dim2*dim3))
    mapids = T.repeat(mapids, dim0, axis=0).flatten()
    rowids = k_max_ids.flatten()
    colids = T.arange(dim3).reshape((1, dim3))
    colids = T.repeat(colids, dim0*dim1*dim2, axis=0).flatten()
    sig_mask = T.zeros_like(sig_input)
    choosed = sig_input[batchids, mapids, rowids, colids]
    sig_mask = T.set_subtensor(sig_mask[batchids, mapids, rowids, colids], 1)
    input_mask = sig_mask * sig_input
    result = input * T.addbroadcast(input_mask, 3)
    return result, sig_input
开发者ID:Tskatom,项目名称:Protest_Event_Encoder,代码行数:25,代码来源:DLBE_Event_Advance.py

示例4: output

    def output(self, x, index_selection_func=None):
        if self.n_out > 1:
            iWin = self.k

            if self.n_in == 1:
                iWin = 1

            rnd_proj = T.dot(
                x.reshape((x.shape[0], x.shape[1]*x.shape[2])),
                self.rand_proj_mat
            )

            if index_selection_func is not None:
                self.out_idxs = index_selection_func(rnd_proj)
            else:
                self.out_idxs = T.argsort(rnd_proj)
            self.out_idxs = T.sort(self.out_idxs[:, -self.k:])

            # self.out_idxs.set_value(
            #     np.random.randint(0, self.n_out, (self.batch_size, self.k))
            # )

        sparse = sparse_block_dot_SS(
            self.W,
            x,
            self.in_idxs,
            self.b,
            self.out_idxs
        )

        return (sparse if self.activation is None
                else self.activation(sparse))
开发者ID:daemonmaker,项目名称:biglittle,代码行数:32,代码来源:layer.py

示例5: dynamic_kmaxPooling

    def dynamic_kmaxPooling(self, curConv_out, k):
        neighborsForPooling = TSN.images2neibs(ten4=curConv_out, neib_shape=(1,curConv_out.shape[3]), mode='ignore_borders')
        self.neighbors = neighborsForPooling

        neighborsArgSorted = T.argsort(neighborsForPooling, axis=1)
        kNeighborsArg = neighborsArgSorted[:,-k:]
        #self.bestK = kNeighborsArg
        kNeighborsArgSorted = T.sort(kNeighborsArg, axis=1)

        ii = T.repeat(T.arange(neighborsForPooling.shape[0]), k)
        jj = kNeighborsArgSorted.flatten()
        pooledkmaxTmp = neighborsForPooling[ii, jj]
        new_shape = T.cast(T.join(0, 
                           T.as_tensor([neighborsForPooling.shape[0]]),
                           T.as_tensor([k])),
                           'int64')
        pooledkmax_matrix = T.reshape(pooledkmaxTmp, new_shape, ndim=2)

        rightWidth=self.unifiedWidth-k            
        right_padding = T.zeros((neighborsForPooling.shape[0], rightWidth), dtype=theano.config.floatX)
        matrix_padded = T.concatenate([pooledkmax_matrix, right_padding], axis=1)      
        #recover tensor form
        new_shape = T.cast(T.join(0, curConv_out.shape[:-2],
                           T.as_tensor([curConv_out.shape[2]]),
                           T.as_tensor([self.unifiedWidth])),
                           'int64')

        curPooled_out = T.reshape(matrix_padded, new_shape, ndim=4)
                
        return curPooled_out
开发者ID:rgtjf,项目名称:DeepLearning,代码行数:30,代码来源:HKDefined.py

示例6: top_k_pooling

def top_k_pooling(matrix, sentlength_1, sentlength_2, Np):

    #tensor: (1, feature maps, 66, 66)
    #sentlength_1=dim-left1-right1
    #sentlength_2=dim-left2-right2
    #core=tensor[:,:, left1:(dim-right1),left2:(dim-right2) ]
    '''
    repeat_row=Np/sentlength_1
    extra_row=Np%sentlength_1
    repeat_col=Np/sentlength_2
    extra_col=Np%sentlength_2    
    '''
    #repeat core
    matrix_1=repeat_whole_tensor(matrix, 5, True) 
    matrix_2=repeat_whole_tensor(matrix_1, 5, False)

    list_values=matrix_2.flatten()
    neighborsArgSorted = T.argsort(list_values)
    kNeighborsArg = neighborsArgSorted[-(Np**2):]    
    top_k_values=list_values[kNeighborsArg]
    

    all_max_value=top_k_values.reshape((1, Np**2))
    
    return all_max_value  
开发者ID:matrix-revolution,项目名称:Answer_Selection,代码行数:25,代码来源:common_functions.py

示例7: k_max_pool

    def k_max_pool(self, x, k):
        """
        perform k-max pool on the input along the rows

        input: theano.tensor.tensor4
           
        k: theano.tensor.iscalar
            the k parameter

        Returns: 
        4D tensor
        """
        x = T.reshape(x, (x.shape[0], x.shape[1], 1, x.shape[2] * x.shape[3]))
        ind = T.argsort(x, axis=3)

        sorted_ind = T.sort(ind[:, :, :, -k:], axis=3)

        dim0, dim1, dim2, dim3 = sorted_ind.shape

        indices_dim0 = T.arange(dim0).repeat(dim1 * dim2 * dim3)
        indices_dim1 = (
            T.arange(dim1).repeat(dim2 * dim3).reshape((dim1 * dim2 * dim3, 1)).repeat(dim0, axis=1).T.flatten()
        )
        indices_dim2 = T.arange(dim2).repeat(dim3).reshape((dim2 * dim3, 1)).repeat(dim0 * dim1, axis=1).T.flatten()

        result = x[indices_dim0, indices_dim1, indices_dim2, sorted_ind.flatten()].reshape(sorted_ind.shape)
        shape = (result.shape[0], result.shape[1], result.shape[2] * result.shape[3], 1)

        result = T.reshape(result, shape)

        return result
开发者ID:Xls1994,项目名称:DeepLearning,代码行数:31,代码来源:convLayer.py

示例8: _pooling_function

    def _pooling_function(self, inputs, pool_size, strides, border_mode, dim_ordering):

        if pool_size[0]<-1:
            # k-max pooling
            input_layer = T.transpose(inputs, axes=(0, 1, 3, 2))
            sorted_values = T.argsort(input_layer, axis=3)
            topmax_indexes = sorted_values[:, :, :, -self.k:]
            # sort indexes so that we keep the correct order within the sentence
            topmax_indexes_sorted = T.sort(topmax_indexes)

            # given that topmax only gives the index of the third dimension, we need to generate the other 3 dimensions
            dim0 = T.arange(0, input_layer.shape[0]).repeat(input_layer.shape[1] * input_layer.shape[2] * self.k)
            dim1 = T.arange(0, input_layer.shape[1]).repeat(self.k * input_layer.shape[2]).reshape((1, -1)).repeat(
                input_layer.shape[0],
                axis=0).flatten()
            dim2 = T.arange(0, input_layer.shape[2]).repeat(self.k).reshape((1, -1)).repeat(
                input_layer.shape[0] * input_layer.shape[1],
                axis=0).flatten()
            dim3 = topmax_indexes_sorted.flatten()
            x = T.transpose(
                input_layer[dim0, dim1, dim2, dim3].reshape(
                    (input_layer.shape[0], input_layer.shape[1], input_layer.shape[2], self.k)),
                axes=(0, 1, 3, 2))
            return x
        else:
            return super(MaxPooling2DWrapper, self)._pooling_function(inputs, pool_size, strides, border_mode, dim_ordering)
开发者ID:JDwangmo,项目名称:nlp_util,代码行数:26,代码来源:custom_layers.py

示例9: compute_probabilistic_matrix

    def compute_probabilistic_matrix(self,X, y, num_cases, k=5):

        z       = T.dot(X, self.A) #Transform x into z space 
        dists   = T.sqr(dist2hy(z,z))
        dists   = T.extra_ops.fill_diagonal(dists, T.max(dists)+1)
        nv      = T.min(dists,axis=1) # value of nearest neighbour 
        dists   = (dists.T - nv).T
        d       = T.extra_ops.fill_diagonal(dists, 0)
   
        #Take only k nearest 
        num     = T.zeros((num_cases, self.num_classes))
        denom   = T.zeros((num_cases,))
        for c_i in xrange(self.num_classes):

            #Mask for class i
            mask_i = T.eq(T.outer(T.ones_like(y),y),c_i)

            #K nearest neighbour within a class i 
            dim_ci = T.sum(mask_i[0])
            d_c_i = T.reshape(d[mask_i.nonzero()],(num_cases,dim_ci))
            k_indice = T.argsort(d_c_i, axis=1)[:,0:k]
            
            kd = T.zeros((num_cases,k))
            for it in xrange(k):
                kd = T.set_subtensor(kd[:,it], d_c_i[T.arange(num_cases),k_indice[:,it]]) 

            #Numerator
            value   = T.exp(-T.mean(kd,axis=1))
            num     = T.set_subtensor(num[:,c_i], value) 
            denom   += value 
            

        p = num / denom.dimshuffle(0,'x')    #prob that point i will be correctly classified    
        return p
开发者ID:Scott-Alex,项目名称:CCML,代码行数:34,代码来源:nbknca.py

示例10: kmaxpooling_output

        def kmaxpooling_output(input):
            '''
                实现 k-max pooling
                    1. 先排序
                    2. 再分别取出前k个值
            :param k: k top higiest value
            :type k: int
            :return:
            '''
            input = T.transpose(input, axes=(0, 1, 3, 2))
            sorted_values = T.argsort(input, axis=3)
            topmax_indexes = sorted_values[:, :, :, -k:]
            # sort indexes so that we keep the correct order within the sentence
            topmax_indexes_sorted = T.sort(topmax_indexes)

            # given that topmax only gives the index of the third dimension, we need to generate the other 3 dimensions
            dim0 = T.arange(0, input.shape[0]).repeat(input.shape[1] * input.shape[2] * k)
            dim1 = T.arange(0, input.shape[1]).repeat(k * input.shape[2]).reshape((1, -1)).repeat(input.shape[0],
                                                                                                  axis=0).flatten()
            dim2 = T.arange(0, input.shape[2]).repeat(k).reshape((1, -1)).repeat(input.shape[0] * input.shape[1],
                                                                                 axis=0).flatten()
            dim3 = topmax_indexes_sorted.flatten()
            return T.transpose(
                input[dim0, dim1, dim2, dim3].reshape((input.shape[0], input.shape[1], input.shape[2], k)),
                axes=(0, 1, 3, 2))
开发者ID:JDwangmo,项目名称:nlp_util,代码行数:25,代码来源:bow_cnn_model_del.py

示例11: keep_max

def keep_max(input, theta, k):
    """
    :type input: theano.tensor.tensor4
    :param input: the input data
                
    :type theta: theano.tensor.matrix
    :param theta: the parameter for sigmoid function
                            
    :type k: int 
    :param k: the number k used to define top k sentence to remain
    """
    sig_input = T.nnet.sigmoid(T.dot(input, theta))
    if k == 0: # using all the sentences
        result = input * T.addbroadcast(sig_input, 3)
        return result, sig_input

    # get the sorted idx
    sort_idx = T.argsort(sig_input, axis=2)
    k_max_ids = sort_idx[:,:,-k:,:]
    dim0, dim1, dim2, dim3 = k_max_ids.shape
    batchids = T.repeat(T.arange(dim0), dim1*dim2*dim3)
    mapids = T.repeat(T.arange(dim1), dim2*dim3).reshape((1, dim2*dim3))
    mapids = T.repeat(mapids, dim0, axis=0).flatten()
    rowids = k_max_ids.flatten()
    colids = T.arange(dim3).reshape((1, dim3))
    colids = T.repeat(colids, dim0*dim1*dim2, axis=0).flatten()
    # construct masked data
    sig_mask = T.zeros_like(sig_input)
    choosed = sig_input[batchids, mapids, rowids, colids]
    sig_mask = T.set_subtensor(sig_mask[batchids, mapids, rowids, colids], 1)

    input_mask = sig_mask * sig_input
    result = input * T.addbroadcast(input_mask, 3)
    return result, sig_input
开发者ID:Tskatom,项目名称:Protest_Event_Encoder,代码行数:34,代码来源:MIL_SIG_cnn.py

示例12: get_best_sense

 def get_best_sense(self, word, curr_sense, context_vector, W_s):
     scores_all_senses = T.dot(context_vector, W_s[word].T)
     sorted_senses = T.argsort(scores_all_senses)
     score_best = scores_all_senses[sorted_senses[-1]]
     score_second_best = scores_all_senses[sorted_senses[-2]]
     new_sense = T.switch(T.gt(score_best-score_second_best, epsilon), sorted_senses[-1], curr_sense)
     return new_sense
开发者ID:MurtyShikhar,项目名称:COL-772-Project,代码行数:7,代码来源:l2c_fast.py

示例13: _FindB_best

 def _FindB_best(lPLcl, lPprev, dVLcl):
     srtLcl = tensor.argsort(-lPLcl)
     srtLcl = srtLcl[:beam_size]
     deltaVec = tensor.fill( lPLcl[srtLcl], numpy_floatX(-10000.))
     deltaVec = tensor.set_subtensor(deltaVec[0], lPprev)
     lProbBest = ifelse(tensor.eq( dVLcl, tensor.zeros_like(dVLcl)), lPLcl[srtLcl] + lPprev, deltaVec)
     xWIdxBest = ifelse(tensor.eq( dVLcl, tensor.zeros_like(dVLcl)), srtLcl, tensor.zeros_like(srtLcl)) 
     return lProbBest, xWIdxBest 
开发者ID:KentChun33333,项目名称:neuraltalkTheano,代码行数:8,代码来源:lstm_generatorTheano.py

示例14: __call__

 def __call__(self,X):
     ind = T.argsort(X, axis = 3)
     sorted_ind = T.sort(ind[:,:,:, -self.poolsize:], axis = 3)
     dim0, dim1, dim2, dim3 = sorted_ind.shape
     indices_dim0 = T.arange(dim0).repeat(dim1 * dim2 * dim3)
     indices_dim1 = T.arange(dim1).repeat(dim2 * dim3).reshape((dim1*dim2*dim3, 1)).repeat(dim0, axis=1).T.flatten()
     indices_dim2 = T.arange(dim2).repeat(dim3).reshape((dim2*dim3, 1)).repeat(dim0 * dim1, axis = 1).T.flatten()
     return X[indices_dim0, indices_dim1, indices_dim2, sorted_ind.flatten()].reshape(sorted_ind.shape)
开发者ID:karthiknrao,项目名称:scarface,代码行数:8,代码来源:dcnn_layers.py

示例15: argtop_k

def argtop_k(x, k=1):
    # top-k accuracy
    top = T.argsort(x, axis=-1)
    # (Theano cannot index with [..., -top_k:], we need to simulate that)
    top = top[[slice(None) for _ in range(top.ndim - 1)] +
              [slice(-k, None)]]
    top = top[(slice(None),) * (top.ndim - 1) + (slice(None, None, -1),)]
    return top
开发者ID:trungnt13,项目名称:odin_old,代码行数:8,代码来源:theano_backend.py


注:本文中的theano.tensor.argsort函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。