当前位置: 首页>>代码示例>>Python>>正文


Python CURAND_RandomStreams.uniform方法代码示例

本文整理汇总了Python中theano.sandbox.cuda.rng_curand.CURAND_RandomStreams.uniform方法的典型用法代码示例。如果您正苦于以下问题:Python CURAND_RandomStreams.uniform方法的具体用法?Python CURAND_RandomStreams.uniform怎么用?Python CURAND_RandomStreams.uniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在theano.sandbox.cuda.rng_curand.CURAND_RandomStreams的用法示例。


在下文中一共展示了CURAND_RandomStreams.uniform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compare_speed

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
def compare_speed():
    # To run this speed comparison
    # cd <directory of this file>
    # THEANO_FLAGS=device=gpu \
    #   python -c 'import test_rng_curand; test_rng_curand.compare_speed()'

    mrg = MRG_RandomStreams()
    crn = CURAND_RandomStreams(234)

    N = 1000 * 100

    dest = theano.shared(numpy.zeros(N, dtype=theano.config.floatX))

    mrg_u = theano.function([], [], updates={dest: mrg.uniform((N,))},
            profile='mrg uniform')
    crn_u = theano.function([], [], updates={dest: crn.uniform((N,))},
            profile='crn uniform')
    mrg_n = theano.function([], [], updates={dest: mrg.normal((N,))},
            profile='mrg normal')
    crn_n = theano.function([], [], updates={dest: crn.normal((N,))},
            profile='crn normal')

    for f in mrg_u, crn_u, mrg_n, crn_n:
        # don't time the first call, it has some startup cost
        print('DEBUGPRINT')
        print('----------')
        theano.printing.debugprint(f)

    for i in range(100):
        for f in mrg_u, crn_u, mrg_n, crn_n:
            # don't time the first call, it has some startup cost
            f.fn.time_thunks = (i > 0)
            f()
开发者ID:ALISCIFP,项目名称:Segmentation,代码行数:35,代码来源:test_rng_curand.py

示例2: check_uniform_basic

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
def check_uniform_basic(shape_as_symbolic, dim_as_symbolic=False):
    """
    check_uniform_basic(shape_as_symbolic, dim_as_symbolic=False)

    Runs a basic sanity check on the `uniform` method of a
    `CURAND_RandomStreams` object.

    Checks that variates

     * are in the range [0, 1]
     * have a mean in the right neighbourhood (near 0.5)
     * are of the specified shape
     * successive calls produce different arrays of variates

    Parameters
    ----------
    shape_as_symbolic : boolean
        If `True`, est the case that the shape tuple is a symbolic
        variable rather than known at compile-time.

    dim_as_symbolic : boolean
        If `True`, test the case that an element of the shape
        tuple is a Theano symbolic. Irrelevant if `shape_as_symbolic`
        is `True`.
    """
    rng = CURAND_RandomStreams(234)
    if shape_as_symbolic:
        # instantiate a TensorConstant with the value (10, 10)
        shape = constant((10, 10))
    else:
        # Only one dimension is symbolic, with the others known
        if dim_as_symbolic:
            shape = (10, constant(10))
        else:
            shape = (10, 10)
    u0 = rng.uniform(shape)
    u1 = rng.uniform(shape)

    f0 = theano.function([], u0, mode=mode_with_gpu)
    f1 = theano.function([], u1, mode=mode_with_gpu)

    v0list = [f0() for i in range(3)]
    v1list = [f1() for i in range(3)]

    # print v0list
    # print v1list
    # assert that elements are different in a few ways
    assert numpy.all(v0list[0] != v0list[1])
    assert numpy.all(v1list[0] != v1list[1])
    assert numpy.all(v0list[0] != v1list[0])

    for v in v0list:
        assert v.shape == (10, 10)
        assert v.min() >= 0
        assert v.max() <= 1
        assert v.min() < v.max()
        assert .25 <= v.mean() <= .75
开发者ID:ALISCIFP,项目名称:Segmentation,代码行数:59,代码来源:test_rng_curand.py

示例3: Training

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class Training(Layer):
    def __init__(self,rng, W=None,m=1.0, n_samples=50,shape=None,batch_size=1000):
        if W is None:
            W = numpy.asarray(rng.uniform(
                low=-numpy.sqrt(6. / (shape[0] + shape[1])),
                high=numpy.sqrt(6. / (shape[0] + shape[1])),
                size=(shape[0], shape[1])), dtype=theano.config.floatX)

        self.W = theano.shared(value=W, name='Hashtag_emb', borrow=True)
        self.batch_size = batch_size
        self.n_ht = W.shape[0]
        self.m = m
        self.n_samples = n_samples
        self.csrng = CURAND_RandomStreams(123)
        mask = self.csrng.uniform(size=(self.n_samples,1),low=0.0,high=1.0,dtype=theano.config.floatX)
        self.rfun = theano.function([],mask.argsort(axis=0))

        self.alpha = T.constant(1.0/numpy.arange(start=1,stop=self.n_ht + 1,step=1))

        self.weights = [self.W]
        self.biases = []

    def __repr__(self):
        return "{}: W_shape: {}, m={}, n_samples={}, n_ht={}".format(self.__class__.__name__, self.W.shape.eval(),self.m,self.n_samples,self.n_ht)

    def output_func(self, input):
        self.f = T.tensordot(input.dimshuffle(0,'x',1),self.W.dimshuffle('x',0,1),axes=[[1,2],[0,2]]) # cosine sim
        self.y_pred = T.argmax(self.f,axis=0)
        return self.y_pred

    def get_tag_neg(self,f,f_y):
            cand = f[(f > f_y - self.m).nonzero()]
            rnk =cand.shape[0] - 1# due to i != y
            if rnk == 0:
                return 0
            l = T.sum(self.alpha[T.arange(rnk)])
            return l/rnk

    def _warp_loss_cost(self, y,i):
        f_y = self.f[T.arange(y.shape[0]), y]
        s = self.m - f_y + self.f[T.arange(i.shape[0]),i]
        return T.maximum(0.0,s)

    def warp_loss_cost(self, y, idx):
        f_y = self.f[T.arange(y.shape[0]), y]
        f_yy = T.repeat(f_y.dimshuffle(0,'x'),self.f.shape[1],axis=1)

        f_idx = T.maximum(0.0,f_yy - self.f + self.m)
        idx = f_idx.argsort(axis=1)[:,0]

        s = self.m - f_y + self.f[T.arange(idx.shape[0]),idx]
        return T.maximum(0.0,s)

    def training_cost(self, y,i):
        return T.mean(self.warp_loss_cost(y,i))
开发者ID:fwaser,项目名称:deep-hashtagprediction,代码行数:57,代码来源:nn_layers.py

示例4: HiddenLayer

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
            W_shape = (self.in_chans, self.out_chans)
            if self.W_scale == 'xg':
                W_np = glorot_matrix(W_shape)
            else:
                #W_np = (self.W_scale * (1.0 / np.sqrt(self.in_chans))) * \
                #          npr.normal(0.0, 1.0, W_shape)
                W_np = ortho_matrix(shape=W_shape, gain=self.W_scale)
            W_np = W_np.astype(theano.config.floatX)
            W = theano.shared(value=W_np, name="{0:s}_W".format(self.name))
        if b is None:
            b_np = np.zeros((self.out_chans,), dtype=theano.config.floatX)
            b = theano.shared(value=b_np, name="{0:s}_b".format(self.name))
        # setup scale and bias params for after batch normalization
        if b_in is None:
            # batch normalization reshifts are initialized to zero
            ary = np.zeros((self.out_chans,), dtype=theano.config.floatX)
            b_in = theano.shared(value=ary, name="{0:s}_b_in".format(self.name))
        if s_in is None:
            # batch normalization rescales are initialized to zero
            ary = np.zeros((self.out_chans,), dtype=theano.config.floatX)
            s_in = theano.shared(value=ary, name="{0:s}_s_in".format(self.name))
        return W, b, b_in, s_in

    def _init_conv_params(self, W=None, b=None, b_in=None, s_in=None):
        """
        Initialize all parameters that may be required for feedforward through
        a convolutional hidden layer.
        """
        if W is None:
            W_shape = (self.out_chans, self.in_chans, self.filt_dim, self.filt_dim)
            ary = npr.normal(0.0, self.W_scale*0.02, W_shape).astype(theano.config.floatX)
            W = theano.shared(value=ary, name="{0:s}_W".format(self.name))
        if b is None:
            b_shape = (self.out_chans,)
            ary = npr.normal(0.0, 0.01, b_shape).astype(theano.config.floatX)
            b = theano.shared(value=ary, name="{0:s}_b".format(self.name))
        # setup scale and bias params for after batch normalization
        if b_in is None:
            # batch normalization reshifts are initialized to zero
            ary = np.zeros((self.out_chans,), dtype=theano.config.floatX)
            b_in = theano.shared(value=ary, name="{0:s}_b_in".format(self.name))
        if s_in is None:
            # batch normalization rescales are initialized to zero
            ary = np.zeros((self.out_chans,), dtype=theano.config.floatX)
            s_in = theano.shared(value=ary, name="{0:s}_s_in".format(self.name))
        return W, b, b_in, s_in

    def apply(self, input, use_drop=False):
        """
        Apply feedforward to this input, returning several partial results.
        """
        # Reshape input if a reshape command was provided
        if not (self.shape_func_in is None):
            input = self.shape_func_in(input)
        # Apply masking noise to the input (if desired)
        if use_drop:
            input = self._drop_from_input(input, self.drop_rate)
        if self.layer_type == 'fc':
            # Feedforward through fully-connected layer
            linear_output = T.dot(input, self.W) + self.b
        elif self.layer_type == 'conv':
            # Feedforward through convolutional layer, with adjustable stride
            bm = int((self.filt_dim - 1) / 2) # use "same" mode convolutions
            if self.conv_stride == 'double':
                linear_output = dnn_conv(input, self.W, subsample=(2, 2),
                                         border_mode=(bm, bm))
            elif self.conv_stride == 'single':
                linear_output = dnn_conv(input, self.W, subsample=(1, 1),
                                         border_mode=(bm, bm))
            elif self.conv_stride == 'half':
                linear_output = deconv(input, self.W, subsample=(2, 2),
                                       border_mode=(bm, bm))
            else:
                assert False, "Unknown stride type!"
            linear_output = linear_output + self.b.dimshuffle('x',0,'x','x')
        else:
            assert False, "Unknown layer type!"
        # Apply batch normalization if desired
        if self.apply_bn:
            linear_output = batchnorm(linear_output, rescale=self.s_in,
                                      reshift=self.b_in, u=None, s=None)
        # Apply activation function
        final_output = self.activation(linear_output)
        # Reshape output if a reshape command was provided
        if not (self.shape_func_out is None):
            linear_output = self.shape_func_out(linear_output)
            final_output = self.shape_func_out(final_output)
        return final_output, linear_output

    def _drop_from_input(self, input, p):
        """p is the probability of dropping elements of input."""
        # get a drop mask that drops things with probability p
        drop_rnd = self.rng.uniform(size=input.shape, low=0.0, high=1.0, \
                dtype=theano.config.floatX)
        drop_mask = drop_rnd > p
        # get a scaling factor to keep expectations fixed after droppage
        drop_scale = 1. / (1. - p)
        # apply dropout mask and rescaling factor to the input
        droppy_input = drop_scale * input * drop_mask
        return droppy_input
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:104,代码来源:NetLayers.py

示例5: MultiStageModel

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
        # this weight balances l1 vs. l2 penalty on posterior KLds
        self.lam_kld_l1l2 = theano.shared(value=zero_ary, name='msm_lam_kld_l1l2')
        self.set_lam_kld_l1l2(1.0)

        if self.shared_param_dicts is None:
            # initialize "optimizable" parameters specific to this MSM
            init_vec = to_fX( np.zeros((self.z_dim,)) )
            self.p_z_mean = theano.shared(value=init_vec, name='msm_p_z_mean')
            self.p_z_logvar = theano.shared(value=init_vec, name='msm_p_z_logvar')
            init_vec = to_fX( np.zeros((self.obs_dim,)) )
            self.obs_logvar = theano.shared(value=zero_ary, name='msm_obs_logvar')
            self.bounded_logvar = 8.0 * T.tanh((1.0/8.0) * self.obs_logvar)
            self.shared_param_dicts = {}
            self.shared_param_dicts['p_z_mean'] = self.p_z_mean
            self.shared_param_dicts['p_z_logvar'] = self.p_z_logvar
            self.shared_param_dicts['obs_logvar'] = self.obs_logvar
        else:
            self.p_z_mean = self.shared_param_dicts['p_z_mean']
            self.p_z_logvar = self.shared_param_dicts['p_z_logvar']
            self.obs_logvar = self.shared_param_dicts['obs_logvar']
            self.bounded_logvar = 8.0 * T.tanh((1.0/8.0) * self.obs_logvar)

        # setup a function for computing reconstruction log likelihood
        if self.x_type == 'bernoulli':
            self.log_prob_func = lambda xo, xh: \
                    (-1.0 * log_prob_bernoulli(xo, xh))
        else:
            self.log_prob_func = lambda xo, xh: \
                    (-1.0 * log_prob_gaussian2(xo, xh, \
                     log_vars=self.bounded_logvar))

        # get a drop mask that drops things with probability p
        drop_scale = 1. / (1. - self.drop_rate[0])
        drop_rnd = self.rng.uniform(size=self.x_out.shape, \
                low=0.0, high=1.0, dtype=theano.config.floatX)
        drop_mask = drop_scale * (drop_rnd > self.drop_rate[0])

        #############################
        # Setup self.z and self.s0. #
        #############################
        print("Building MSM step 0...")
        drop_x = drop_mask * self.x_in
        self.q_z_mean, self.q_z_logvar, self.z = \
                self.q_z_given_x.apply(drop_x, do_samples=True)
        # get initial observation state
        self.s0, _ = self.p_s0_given_z.apply(self.z, do_samples=False)

        # gather KLd and NLL for the initialization step
        self.init_klds = gaussian_kld(self.q_z_mean, self.q_z_logvar, \
                                      self.p_z_mean, self.p_z_logvar)
        self.init_nlls =  -1.0 * \
                self.log_prob_func(self.x_out, self.obs_transform(self.s0))

        ##################################################
        # Setup the iterative generation loop using scan #
        ##################################################
        def ir_step_func(hi_zmuv, sim1):
            # get variables used throughout this refinement step
            sim1_obs = self.obs_transform(sim1) # transform state -> obs
            grad_ll = self.x_out - sim1_obs

            # get samples of next hi, conditioned on current si
            hi_p_mean, hi_p_logvar = self.p_hi_given_si.apply( \
                    sim1_obs, do_samples=False)
            # now we build the model for variational hi given si
            hi_q_mean, hi_q_logvar = self.q_hi_given_x_si.apply( \
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:70,代码来源:MultiStageModel.py

示例6: WalkoutModel

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
            switch_val = 1.0
        zero_ary = np.zeros((1,))
        new_val = zero_ary + switch_val
        self.train_switch.set_value(to_fX(new_val))
        return

    def _construct_zi_zmuv(self, xo):
        """
        Construct the necessary ZMUV gaussian samples for generating
        trajectories from this WalkoutModel, for input matrix xo.
        """
        zi_zmuv = self.rng.normal( \
                size=(self.total_steps, xo.shape[0], self.z_dim), \
                avg=0.0, std=1.0, dtype=theano.config.floatX)
        return zi_zmuv

    def _construct_rev_masks(self, xo):
        """
        Compute the sequential revelation masks for the input batch in xo.
        -- We need to construct mask sequences for both p and q.
        """
        if self.use_rev_masks:
            # make batch copies of self.rev_masks_p and self.rev_masks_q
            pmasks = self.rev_masks_p.dimshuffle(0,'x',1).repeat(xo.shape[0], axis=1)
            qmasks = self.rev_masks_q.dimshuffle(0,'x',1).repeat(xo.shape[0], axis=1)
        else:
            pm_list = []
            qm_list = []
            # make a zero mask that does nothing
            zero_mask = T.alloc(0.0, 1, xo.shape[0], xo.shape[1])
            # generate independently sampled masks for each revelation block
            for rb in self.rev_sched:
                # make a random binary mask with ones at rate rb[1]
                rand_vals = self.rng.uniform( \
                        size=(1, xo.shape[0], xo.shape[1]), \
                        low=0.0, high=1.0, dtype=theano.config.floatX)
                rand_mask = rand_vals < rb[1]
                # append the masks for this revleation block to the mask lists
                #
                # the guide policy (in q) gets to peek at the values that will be
                # revealed to the primary policy (in p) for the entire block. The
                # primary policy only gets to see these values at end of the final
                # step of the block. Within a given step, values are revealed to q
                # at the beginning of the step, and to p at the end.
                #
                # e.g. in a revelation block with only a single step, the guide
                # policy sees the values at the beginning of the step, which allows
                # it to guide the step. the primary policy only gets to see the
                # values at the end of the step.
                #
                # i.e. a standard variational auto-encoder is equivalent to a
                # sequential revelation and refinement model with only one
                # revelation block, which has one step and a reveal rate of 1.0.
                #
                for refine_step in range(rb[0]-1):
                    pm_list.append(zero_mask)
                    qm_list.append(rand_mask)
                pm_list.append(rand_mask)
                qm_list.append(rand_mask)
            # concatenate each mask list into a 3-tensor
            pmasks = T.cast(T.concatenate(pm_list, axis=0), 'floatX')
            qmasks = T.cast(T.concatenate(qm_list, axis=0), 'floatX')
        return [pmasks, qmasks]

    def _construct_nll_costs(self, si, xo, nll_mask):
        """
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:70,代码来源:WalkoutModel.py

示例7: HiddenLayer

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
        else:
            self.noisy_input = self.fuzzy_input

        # Set some basic layer properties
        self.pool_size = pool_size
        self.in_dim = in_dim
        self.out_dim = out_dim
        if self.pool_size <= 1:
            self.filt_count = self.out_dim
        else:
            self.filt_count = self.out_dim * self.pool_size
        self.pool_count = self.filt_count / max(self.pool_size, 1)
        if activation:
            self.activation = activation
        else:
            if self.pool_size <= 1:
                self.activation = lambda x: relu_actfun(x)
            else:
                self.activation = lambda x: \
                        maxout_actfun(x, self.pool_size, self.filt_count)

        # Get some random initial weights and biases, if not given
        if W is None:
            if self.pool_size <= 1:
                # Generate random initial filters in a typical way
                W_init = np.asarray(0.04 * rng.standard_normal( \
                          size=(self.in_dim, self.filt_count)), \
                          dtype=theano.config.floatX)
            else:
                # Generate groups of random filters to pool over such that
                # intra-group correlations are stronger than inter-group
                # correlations, to encourage pooling over similar filters...
                filters = []
                for g_num in range(self.pool_count):
                    g_filt = 0.01 * rng.standard_normal(size=(self.in_dim,1))
                    for f_num in range(self.pool_size):
                        f_filt = g_filt + (0.005 * rng.standard_normal( \
                                size=(self.in_dim,1)))
                        filters.append(f_filt)
                W_init = np.hstack(filters).astype(theano.config.floatX)

            W = theano.shared(value=W_init, name="{0:s}_W".format(name))
        if b is None:
            b_init = np.zeros((self.filt_count,), dtype=theano.config.floatX)
            b = theano.shared(value=b_init, name="{0:s}_b".format(name))

        # Set layer weights and biases
        self.W = W
        self.b = b

        # Compute linear "pre-activation" for this layer
        if use_bias:
            self.linear_output = T.dot(self.noisy_input, self.W) + self.b
        else:
            self.linear_output = T.dot(self.noisy_input, self.W)

        # Add noise to the pre-activation features (if desired)
        self.noisy_linear = self.linear_output  + \
                (bias_noise * self.srng.normal(size=self.linear_output.shape, \
                dtype=theano.config.floatX))

        # Apply activation function
        self.output = self.activation(self.noisy_linear)

        # Compute some properties of the activations, probably to regularize
        self.act_l2_sum = T.sum(self.output**2.) / self.output.size
        self.row_l1_sum = T.sum(abs(row_normalize(self.output))) / \
                self.output.shape[0]
        self.col_l1_sum = T.sum(abs(col_normalize(self.output))) / \
                self.output.shape[1]

        # Conveniently package layer parameters
        if use_bias:
            self.params = [self.W, self.b]
        else:
            self.params = [self.W]
        # Layer construction complete...
        return

    def _drop_from_input(self, input, p):
        """p is the probability of dropping elements of input."""
        # get a drop mask that drops things with probability p
        #drop_mask = self.srng.binomial(n=1, p=1-p, size=input.shape, \
        #        dtype=theano.config.floatX)
        noise_rnd = self.srng.uniform(input.shape, low=0.0, high=1.0, \
            dtype=theano.config.floatX)
        drop_mask = noise_rnd > p
        # get a scaling factor to keep expectations fixed after droppage
        drop_scale = 1. / (1. - p)
        # apply dropout mask and rescaling factor to the input
        droppy_input = drop_scale * input * drop_mask
        return droppy_input

    def _noisy_params(self, P, noise_lvl=0.):
        """Noisy weights, like convolving energy surface with a gaussian."""
        #P_nz = P + self.srng.normal(size=P.shape, avg=0., std=noise_lvl, \
        #        dtype=theano.config.floatX)
        P_nz = P + self.srng.normal(size=P.shape, avg=0.0, std=noise_lvl, \
                dtype=theano.config.floatX)
        return P_nz
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:104,代码来源:DexNet.py

示例8: HiddenLayer

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
        self.pool_count = self.filt_count / max(self.pool_size, 1)
        if activation is None:
            activation = relu_actfun
        if self.pool_size <= 1:
            self.activation = activation
        else:
            self.activation = lambda x: \
                    maxout_actfun(x, self.pool_size, self.filt_count)

        # Get some random initial weights and biases, if not given
        if W is None:
            # Generate initial filters using orthogonal random trick
            W_shape = (self.in_dim, self.filt_count)
            #W_scale = W_scale * (1.0 / np.sqrt(self.in_dim))
            #W_init = W_scale * npr.normal(0.0, 1.0, W_shape)
            W_init = ortho_matrix(shape=(self.in_dim, self.filt_count), \
                    gain=W_scale)
            #W_init = 0.01 * npr.normal(0.0, 1.0, W_shape)
            W_init = W_init.astype(theano.config.floatX)
            W = theano.shared(value=W_init, name="{0:s}_W".format(name))
        if b is None:
            b_init = np.zeros((self.filt_count,), dtype=theano.config.floatX)
            b = theano.shared(value=b_init, name="{0:s}_b".format(name))

        # Set layer weights and biases
        self.W = W
        self.b = b

        # Feedforward through the layer
        use_in = input_noise > 0.001
        use_bn = bias_noise > 0.001
        use_drop = drop_rate > 0.001
        self.linear_output, self.noisy_linear, self.output = \
                self.apply(input, use_in=use_in, use_bn=use_bn, \
                use_drop=use_drop)

        # Compute some properties of the activations, probably to regularize
        self.act_l2_sum = T.sum(self.noisy_linear**2.) / self.output.size

        # Conveniently package layer parameters
        self.params = [self.W, self.b, self.b_in, self.s_in]
        self.shared_param_dicts = { \
                'W': self.W, \
                'b': self.b, \
                'b_in': self.b_in, \
                's_in': self.s_in }
        # Layer construction complete...
        return

    def apply(self, input, use_in=False, use_bn=False, use_drop=False):
        """
        Apply feedforward to this input, returning several partial results.
        """
        # Add gaussian noise to the input (if desired)
        #fancy_input = T.nnet.softplus(self.s_in) * (input + self.b_in)
        fancy_input = input
        if use_in:
            fuzzy_input = fancy_input + self.input_noise[0] * \
                    self.rng.normal(size=fancy_input.shape, avg=0.0, std=1.0, \
                    dtype=theano.config.floatX)
        else:
            fuzzy_input = fancy_input
        # Apply masking noise to the input (if desired)
        if use_drop:
            noisy_input = self._drop_from_input(fuzzy_input, self.drop_rate[0])
        else:
            noisy_input = fuzzy_input
        self.noisy_input = noisy_input
        # Compute linear "pre-activation" for this layer
        linear_output = T.dot(noisy_input, self.W) + self.b
        # Add noise to the pre-activation features (if desired)
        if use_bn:
            noisy_linear = linear_output + self.bias_noise[0] * \
                    self.rng.normal(size=linear_output.shape, avg=0.0, \
                    std=1.0, dtype=theano.config.floatX)
        else:
            noisy_linear = linear_output
        # Apply activation function
        final_output = self.activation(noisy_linear)
        # package partial results for easy return
        results = [linear_output, noisy_linear, final_output]
        return results

    def _drop_from_input(self, input, p):
        """p is the probability of dropping elements of input."""
        # get a drop mask that drops things with probability p
        drop_rnd = self.rng.uniform(size=input.shape, low=0.0, high=1.0, \
                dtype=theano.config.floatX)
        drop_mask = drop_rnd > p
        # get a scaling factor to keep expectations fixed after droppage
        drop_scale = 1. / (1. - p)
        # apply dropout mask and rescaling factor to the input
        droppy_input = drop_scale * input * drop_mask
        return droppy_input

    def _noisy_params(self, P, noise_lvl=0.):
        """Noisy weights, like convolving energy surface with a gaussian."""
        P_nz = P + self.rng.normal(size=P.shape, avg=0.0, std=noise_lvl, \
                dtype=theano.config.floatX)
        return P_nz
开发者ID:AjayTalati,项目名称:Sequential-Generation,代码行数:104,代码来源:NetLayers.py

示例9: DAELayer

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class DAELayer(object):
    def __init__(self, rng, clean_input=None, fuzzy_input=None, \
            in_dim=0, out_dim=0, activation=None, input_noise=0., \
            W=None, b_h=None, b_v=None, W_scale=1.0):

        # Setup a shared random generator for this layer
        self.rng = RandStream(rng.randint(1000000))

        # Grab the layer input and perturb it with some sort of noise. This
        # is, afterall, a _denoising_ autoencoder...
        self.clean_input = clean_input
        self.noisy_input = self._get_noisy_input(fuzzy_input, input_noise)

        # Set some basic layer properties
        self.activation = activation
        self.in_dim = in_dim
        self.out_dim = out_dim

        # Get some random initial weights and biases, if not given
        if W is None:
            W_init = np.asarray(1.0 * DCG(rng.standard_normal( \
                      size=(in_dim, out_dim)), dtype=theano.config.floatX))
            W = theano.shared(value=(W_scale*W_init), name='W')
        if b_h is None:
            b_init = np.zeros((out_dim,), dtype=theano.config.floatX)
            b_h = theano.shared(value=b_init, name='b_h')
        if b_v is None:
            b_init = np.zeros((in_dim,), dtype=theano.config.floatX)
            b_v = theano.shared(value=b_init, name='b_v')

        # Grab pointers to the now-initialized weights and biases
        self.W = W
        self.b_h = b_h
        self.b_v = b_v

        # Put the learnable/optimizable parameters into a list
        self.params = [self.W, self.b_h, self.b_v]
        # Beep boop... layer construction complete...
        return

    def compute_costs(self, lam_l1=None):
        """Compute reconstruction and activation sparsity costs."""
        # Get noise-perturbed encoder/decoder parameters
        W_nz = self._noisy_params(self.W, 0.01)
        b_nz = self.b_h #self._noisy_params(self.b_h, 0.05)
        # Compute hidden and visible activations
        A_v, A_h = self._compute_activations(self.noisy_input, \
                W_nz, b_nz, self.b_v)
        # Compute reconstruction error cost
        recon_cost = T.sum((self.clean_input - A_v)**2.0) / \
                self.clean_input.shape[0]
        # Compute sparsity penalty (over both population and lifetime)
        row_l1_sum = T.sum(abs(row_normalize(A_h))) / A_h.shape[0]
        col_l1_sum = T.sum(abs(col_normalize(A_h))) / A_h.shape[1]
        sparse_cost = lam_l1[0] * (row_l1_sum + col_l1_sum)
        return [recon_cost, sparse_cost]

    def _compute_hidden_acts(self, X, W, b_h):
        """Compute activations of encoder (at hidden layer)."""
        A_h = self.activation(T.dot(X, W) + b_h)
        return A_h

    def _compute_activations(self, X, W, b_h, b_v):
        """Compute activations of decoder (at visible layer)."""
        A_h = self._compute_hidden_acts(X, W, b_h)
        A_v = T.dot(A_h, W.T) + b_v
        return [A_v, A_h]

    def _noisy_params(self, P, noise_lvl=0.):
        """Noisy weights, like convolving energy surface with a gaussian."""
        if noise_lvl > 1e-3:
            P_nz = P + DCG(self.rng.normal(size=P.shape, avg=0.0, std=noise_lvl, \
                    dtype=theano.config.floatX))
        else:
            P_nz = P
        return P_nz

    def _get_noisy_input(self, input, p):
        """p is the probability of dropping elements of input."""
        drop_rnd = self.rng.uniform(input.shape, low=0.0, high=1.0, \
            dtype=theano.config.floatX)
        drop_mask = drop_rnd > p
        # Cast mask from int to float32, to keep things on GPU
        noisy_input = input * DCG(drop_mask)
        return noisy_input
开发者ID:AjayTalati,项目名称:Sequential-Generation,代码行数:87,代码来源:NetLayers.py

示例10: ConvPoolLayer

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class ConvPoolLayer(object):
    """
    A simple convolution --> max-pooling layer.

    The (symbolic) input to this layer must be a theano.tensor.dtensor4 shaped
    like (batch_size, chan_count, im_dim_1, im_dim_2).

    filt_def should be a 4-tuple like (filt_count, in_chans, filt_def_1, filt_def_2)

    pool_def should be a 3-tuple like (pool_dim, pool_stride)
    """
    def __init__(self, rng, input=None, filt_def=None, pool_def=(2, 2), \
    		activation=None, drop_rate=0., input_noise=0., bias_noise=0., \
    		W=None, b=None, name="", W_scale=1.0):

        # Setup a shared random generator for this layer
        #self.rng = theano.tensor.shared_randomstreams.RandomStreams( \
        #        rng.randint(100000))
        self.rng = CURAND_RandomStreams(rng.randint(1000000))

        self.clean_input = input

        # Add gaussian noise to the input (if desired)
        if (input_noise > 1e-4):
            self.fuzzy_input = input + self.rng.normal(size=input.shape, \
                    avg=0.0, std=input_noise, dtype=theano.config.floatX)
        else:
            self.fuzzy_input = input

        # Apply masking noise to the input (if desired)
        if (drop_rate > 1e-4):
            self.noisy_input = self._drop_from_input(self.fuzzy_input, drop_rate)
        else:
            self.noisy_input = self.fuzzy_input

        # Set the activation function for the conv filters
        if activation:
            self.activation = activation
        else:
        	self.activation = lambda x: relu_actfun(x)

        # initialize weights with random weights
        W_init = 0.01 * np.asarray(rng.normal( \
        		size=filt_def), dtype=theano.config.floatX)
        self.W = theano.shared(value=(W_scale*W_init), \
        		name="{0:s}_W".format(name))

        # the bias is a 1D tensor -- one bias per output feature map
        b_init = np.zeros((filt_def[0],), dtype=theano.config.floatX) + 0.1
        self.b = theano.shared(value=b_init, name="{0:s}_b".format(name))

        # convolve input feature maps with filters
        input_c01b = self.noisy_input.dimshuffle(1, 2, 3, 0) # bc01 to c01b
        filters_c01b = self.W.dimshuffle(1, 2, 3, 0) # bc01 to c01b
        conv_op = FilterActs(stride=1, partial_sum=1)
        contig_input = gpu_contiguous(input_c01b)
        contig_filters = gpu_contiguous(filters_c01b)
        conv_out_c01b = conv_op(contig_input, contig_filters)

        if (bias_noise > 1e-4):
        	noisy_conv_out_c01b = conv_out_c01b + self.rng.normal( \
        			size=conv_out_c01b.shape, avg=0.0, std=bias_noise, \
        			dtype=theano.config.floatX)
        else:
        	noisy_conv_out_c01b = conv_out_c01b

        # downsample each feature map individually, using maxpooling
        pool_op = MaxPool(ds=pool_def[0], stride=pool_def[1])
        mp_out_c01b = pool_op(noisy_conv_out_c01b)
        mp_out_bc01 = mp_out_c01b.dimshuffle(3, 0, 1, 2) # c01b to bc01

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
        # thus be broadcasted across mini-batches and feature map
        # width & height
        self.noisy_linear_output = mp_out_bc01 + self.b.dimshuffle('x', 0, 'x', 'x')
        self.linear_output = self.noisy_linear_output
        self.output = self.activation(self.noisy_linear_output)

        # store parameters of this layer
        self.params = [self.W, self.b]

        return

    def _drop_from_input(self, input, p):
        """p is the probability of dropping elements of input."""
        # get a drop mask that drops things with probability p
        drop_rnd = self.rng.uniform(size=input.shape, low=0.0, high=1.0, \
                dtype=theano.config.floatX)
        drop_mask = drop_rnd > p
        # get a scaling factor to keep expectations fixed after droppage
        drop_scale = 1. / (1. - p)
        # apply dropout mask and rescaling factor to the input
        droppy_input = drop_scale * input * drop_mask
        return droppy_input

    def _noisy_params(self, P, noise_lvl=0.):
        """Noisy weights, like convolving energy surface with a gaussian."""
        P_nz = P + self.rng.normal(size=P.shape, avg=0.0, std=noise_lvl, \
                dtype=theano.config.floatX)
#.........这里部分代码省略.........
开发者ID:darcy0511,项目名称:NN-Python,代码行数:103,代码来源:NetLayers.py

示例11: TwoStageModel

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]

#.........这里部分代码省略.........
        self.batch_reps = T.lscalar()

        # setup switching variable for changing between sampling/training
        zero_ary = to_fX( np.zeros((1,)) )
        self.train_switch = theano.shared(value=zero_ary, name='msm_train_switch')
        self.set_train_switch(1.0)
        # setup a variable for controlling dropout noise
        self.drop_rate = theano.shared(value=zero_ary, name='msm_drop_rate')
        self.set_drop_rate(0.0)
        # this weight balances l1 vs. l2 penalty on posterior KLds
        self.lam_kld_l1l2 = theano.shared(value=zero_ary, name='msm_lam_kld_l1l2')
        self.set_lam_kld_l1l2(1.0)

        if self.shared_param_dicts is None:
            # initialize "optimizable" parameters specific to this MSM
            init_vec = to_fX( np.zeros((self.z_dim,)) )
            self.p_z_mean = theano.shared(value=init_vec, name='msm_p_z_mean')
            self.p_z_logvar = theano.shared(value=init_vec, name='msm_p_z_logvar')
            init_vec = to_fX( np.zeros((self.x_dim,)) )
            self.obs_logvar = theano.shared(value=zero_ary, name='msm_obs_logvar')
            self.bounded_logvar = 8.0 * T.tanh((1.0/8.0) * self.obs_logvar)
            self.shared_param_dicts = {}
            self.shared_param_dicts['p_z_mean'] = self.p_z_mean
            self.shared_param_dicts['p_z_logvar'] = self.p_z_logvar
            self.shared_param_dicts['obs_logvar'] = self.obs_logvar
        else:
            self.p_z_mean = self.shared_param_dicts['p_z_mean']
            self.p_z_logvar = self.shared_param_dicts['p_z_logvar']
            self.obs_logvar = self.shared_param_dicts['obs_logvar']
            self.bounded_logvar = 8.0 * T.tanh((1.0/8.0) * self.obs_logvar)

        # get a drop mask that drops things with probability p
        drop_scale = 1. / (1. - self.drop_rate[0])
        drop_rnd = self.rng.uniform(size=self.x_out.shape, \
                low=0.0, high=1.0, dtype=theano.config.floatX)
        drop_mask = drop_scale * (drop_rnd > self.drop_rate[0])

        ##############################################
        # Setup the TwoStageModels main computation. #
        ##############################################
        print("Building TSM...")
        # samples of "first" latent state
        drop_x = drop_mask * self.x_in
        z_q_mean, z_q_logvar, self.z = \
                self.q_z_given_x.apply(drop_x, do_samples=True)
        # compute relevant KLds for this step
        self.kld_z_q2ps = gaussian_kld(z_q_mean, z_q_logvar, \
                                       self.p_z_mean, self.p_z_logvar)
        self.kld_z_p2qs = gaussian_kld(self.p_z_mean, self.p_z_logvar, \
                                       z_q_mean, z_q_logvar)
        # transform "first" latent state into "second" latent state
        self.s, _ = self.p_s_given_z.apply(self.z, do_samples=False)

        # get samples of h, conditioned on current s
        h_p_mean, h_p_logvar, h_p = self.p_h_given_s.apply( \
                self.s, do_samples=True)
        # get variational samples of h, given s and x_out
        h_q_mean, h_q_logvar, h_q = self.q_h_given_x_s.apply( \
                T.horizontal_stack(self.x_out, self.s), \
                do_samples=True)

        # make h samples that can be switched between h_p and h_q
        self.h = (self.train_switch[0] * h_q) + \
                 ((1.0 - self.train_switch[0]) * h_p)

        # compute relevant KLds for this step
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:70,代码来源:TwoStageModel.py

示例12: ClassModel

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class ClassModel(object):
    """
    Controller for training a fancy pseudo-bayesian classifier.

    Parameters:
        rng: numpy.random.RandomState (for reproducibility)
        x_in: the input data to encode
        y_in: int labels >= 1 for x_in when available, otherwise 0.
        q_z_given_x: InfNet for z given x
        class_count: number of classes to classify into
        z_dim: dimension of the "initial" latent space
        use_samples: whether to use z samples or just z mean
    """
    def __init__(self, rng=None, \
            x_in=None, y_in=None, \
            q_z_given_x=None, \
            class_count=None, \
            z_dim=None, \
            use_samples=None):
        # setup a rng for this GIPair
        self.rng = RandStream(rng.randint(100000))

        # record the dimensions of various spaces relevant to this model
        self.class_count = class_count
        self.z_dim = z_dim
        self.shared_dim = q_z_given_x.shared_layers[-1].out_dim
        self.use_samples = use_samples

        # grab handles to the relevant InfNets
        self.q_z_given_x = q_z_given_x

        # record the symbolic variables that will provide inputs to the
        # computation graph created to describe this MultiStageModel
        self.x_in = x_in
        self.y_in = y_in

        # setup switching variable for changing between sampling/training
        zero_ary = to_fX( np.zeros((1,)) )
        # setup a variable for controlling dropout noise
        self.drop_rate = theano.shared(value=zero_ary, name='cm_drop_rate')
        self.set_drop_rate(0.0)

        # initialize classification layer parameters
        init_mat = to_fX(0.01 * npr.randn(self.shared_dim, self.class_count))
        init_vec = to_fX( np.zeros((self.class_count,)) )
        self.W_class = theano.shared(value=init_mat, name='cm_W_class')
        self.b_class = theano.shared(value=init_vec, name='cm_b_class')
        # initialize "optimizable" parameters specific to this CM
        init_vec = to_fX( np.zeros((self.z_dim,)) )
        self.p_z_mean = theano.shared(value=init_vec, name='cm_p_z_mean')
        self.p_z_logvar = theano.shared(value=init_vec, name='cm_p_z_logvar')

        #################
        # Setup self.z. #
        #################
        self.q_z_mean, self.q_z_logvar, self.q_z_samples = \
                self.q_z_given_x.apply(self.x_in, do_samples=True)
        self.q_z_samples = self.q_z_given_x.apply_shared(self.x_in)

        # get a drop mask that drops things with probability p
        drop_scale = 1. / (1. - self.drop_rate[0])
        drop_rnd = self.rng.uniform(size=self.q_z_samples.shape, \
                low=0.0, high=1.0, dtype=theano.config.floatX)
        drop_mask = drop_scale * (drop_rnd > self.drop_rate[0])

        # get a droppy version of either z mean or z samples
        # if self.use_samples:
        #     self.z = self.q_z_samples * drop_mask
        # else:
        #     self.z = self.q_z_mean * drop_mask
        self.z = self.q_z_samples * drop_mask

        # compute class predictions
        self.y_out = T.dot(self.z, self.W_class) + self.b_class

        # compute KLds for training via variational free-energy
        self.kld_z_q2ps = gaussian_kld(self.q_z_mean, self.q_z_logvar, \
                                       self.p_z_mean, self.p_z_logvar)
        self.kld_z_p2qs = gaussian_kld(self.p_z_mean, self.p_z_logvar, \
                                       self.q_z_mean, self.q_z_logvar)

        ######################################################################
        # ALL SYMBOLIC VARS NEEDED FOR THE OBJECTIVE SHOULD NOW BE AVAILABLE #
        ######################################################################

        # shared var learning rate for generator and inferencer
        zero_ary = to_fX( np.zeros((1,)) )
        self.lr_1 = theano.shared(value=zero_ary, name='cm_lr_1')
        self.lr_2 = theano.shared(value=zero_ary, name='cm_lr_2')
        # shared var momentum parameters for generator and inferencer
        self.mom_1 = theano.shared(value=zero_ary, name='cm_mom_1')
        self.mom_2 = theano.shared(value=zero_ary, name='cm_mom_2')
        # init parameters for controlling learning dynamics
        self.set_sgd_params()
        # init shared var for weighting nll of data given posterior sample
        self.lam_nll = theano.shared(value=zero_ary, name='cm_lam_nll')
        self.set_lam_nll(lam_nll=1.0)
        # init shared var for weighting prior kld against reconstruction
        self.lam_kld_q2p = theano.shared(value=zero_ary, name='cm_lam_kld_q2p')
        self.lam_kld_p2q = theano.shared(value=zero_ary, name='cm_lam_kld_p2q')
#.........这里部分代码省略.........
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:103,代码来源:ClassModel.py

示例13: GenUniModule

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class GenUniModule(object):
    """
    Module that applies a linear transform followed by an non-linearity.
    """
    def __init__(self, rand_dim, out_dim,
                 apply_bn=True, init_func=None,
                 rand_type='normal', final_relu=True, 
                 mod_name='dm_uni'):
        self.rand_dim = rand_dim
        self.out_dim = out_dim
        self.apply_bn = apply_bn
        self.mod_name = mod_name
        self.rand_type = rand_type
        self.final_relu = final_relu
        self.rng = RandStream(123)
        if init_func is None:
            self.init_func = inits.Normal(scale=0.02)
        else:
            self.init_func = init_func
        self._init_params() # initialize parameters
        return

    def _init_params(self):
        """
        Initialize parameters for the layers in this generator module.
        """
        self.w1 = self.init_func((self.rand_dim, self.out_dim),
                                 "{}_w1".format(self.mod_name))
        self.params = [ self.w1 ]
        # make gains and biases for transforms that will get batch normed
        if self.apply_bn:
            gain_ifn = inits.Normal(loc=1., scale=0.02)
            bias_ifn = inits.Constant(c=0.)
            self.g1 = gain_ifn((self.out_dim), "{}_g1".format(self.mod_name))
            self.b1 = bias_ifn((self.out_dim), "{}_b1".format(self.mod_name))
            self.params.extend([self.g1, self.b1])
        return

    def apply(self, batch_size=None, rand_vals=None):
        """
        Apply this generator module. Pass _either_ batch_size or rand_vals.
        """
        assert not ((batch_size is None) and (rand_vals is None)), "need either batch_size or rand_vals"
        if rand_vals is None:
            rand_shape = (batch_size, self.rand_dim)
            if self.rand_type == 'normal':
                rand_vals = self.rng.normal(size=rand_shape, avg=0.0, std=1.0, \
                                            dtype=theano.config.floatX)
            else:
                rand_vals = self.rng.uniform(size=rand_shape, low=-1.0, high=1.0, \
                                             dtype=theano.config.floatX)
        else:
            rand_shape = (rand_vals.shape[0], self.rand_dim)
        rand_vals = rand_vals.reshape(rand_shape)
        # transform random values linearly
        h1 = T.dot(rand_vals, self.w1)
        if self.apply_bn:
            h1 = batchnorm(h1, g=self.g1, b=self.b1)
        if self.final_relu:
            h1 = relu(h1)
        return h1















##############
# EYE BUFFER #
##############
开发者ID:ml-lab,项目名称:MatryoshkaNetworks,代码行数:81,代码来源:MatryoshkaModules.py

示例14: GenFCModule

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class GenFCModule(object):
    """
    Module that transforms random values through a single fully connected
    layer, and then a linear transform (with another relu, optionally).
    """
    def __init__(self, rand_dim, out_dim, fc_dim,
                 apply_bn_1=True, apply_bn_2=True,
                 init_func=None, rand_type='normal',
                 final_relu=True, mod_name='dm_fc'):
        self.rand_dim = rand_dim
        self.out_dim = out_dim
        self.fc_dim = fc_dim
        self.apply_bn_1 = apply_bn_1
        self.apply_bn_2 = apply_bn_2
        self.mod_name = mod_name
        self.rand_type = rand_type
        self.final_relu = final_relu
        self.rng = RandStream(123)
        if init_func is None:
            self.init_func = inits.Normal(scale=0.02)
        else:
            self.init_func = init_func
        self._init_params() # initialize parameters
        return

    def _init_params(self):
        """
        Initialize parameters for the layers in this generator module.
        """
        self.w1 = self.init_func((self.rand_dim, self.fc_dim),
                                 "{}_w1".format(self.mod_name))
        self.w2 = self.init_func((self.fc_dim, self.out_dim),
                                 "{}_w2".format(self.mod_name))
        self.params = [self.w1, self.w2]
        # make gains and biases for transforms that will get batch normed
        if self.apply_bn_1:
            gain_ifn = inits.Normal(loc=1., scale=0.02)
            bias_ifn = inits.Constant(c=0.)
            self.g1 = gain_ifn((self.fc_dim), "{}_g1".format(self.mod_name))
            self.b1 = bias_ifn((self.fc_dim), "{}_b1".format(self.mod_name))
            self.params.extend([self.g1, self.b1])
        if self.apply_bn_2:
            gain_ifn = inits.Normal(loc=1., scale=0.02)
            bias_ifn = inits.Constant(c=0.)
            self.g2 = gain_ifn((self.out_dim), "{}_g2".format(self.mod_name))
            self.b2 = bias_ifn((self.out_dim), "{}_b2".format(self.mod_name))
            self.params.extend([self.g2, self.b2])
        return

    def apply(self, batch_size=None, rand_vals=None):
        """
        Apply this generator module. Pass _either_ batch_size or rand_vals.
        """
        assert not ((batch_size is None) and (rand_vals is None)), "need either batch_size or rand_vals"
        if rand_vals is None:
            rand_shape = (batch_size, self.rand_dim)
            if self.rand_type == 'normal':
                rand_vals = self.rng.normal(size=rand_shape, avg=0.0, std=1.0, \
                                            dtype=theano.config.floatX)
            else:
                rand_vals = self.rng.uniform(size=rand_shape, low=-1.0, high=1.0, \
                                             dtype=theano.config.floatX)
        else:
            rand_shape = (rand_vals.shape[0], self.rand_dim)
        rand_vals = rand_vals.reshape(rand_shape)
        # transform random values into fc layer
        h1 = T.dot(rand_vals, self.w1)
        if self.apply_bn_1:
            h1 = batchnorm(h1, g=self.g1, b=self.b1)
        h1 = relu(h1)
        # transform from fc layer to output
        h2 = T.dot(h1, self.w2)
        if self.apply_bn_2:
            h2 = batchnorm(h2, g=self.g2, b=self.b2)
        if self.final_relu:
            h2 = relu(h2)
        return h2
开发者ID:ml-lab,项目名称:MatryoshkaNetworks,代码行数:79,代码来源:MatryoshkaModules.py

示例15: GenConvModule

# 需要导入模块: from theano.sandbox.cuda.rng_curand import CURAND_RandomStreams [as 别名]
# 或者: from theano.sandbox.cuda.rng_curand.CURAND_RandomStreams import uniform [as 别名]
class GenConvModule(object):
    """
    Module of one "fractionally strided" convolution layer followed by one
    regular convolution layer. Inputs to the fractionally strided convolution
    can optionally be augmented with some random values.

    Params:
        filt_shape: shape for convolution filters -- should be square and odd
        in_chans: number of channels in the inputs to module
        out_chans: number of channels in the outputs from module
        rand_chans: number of random channels to augment input
        use_rand: flag for whether or not to augment inputs
        apply_bn_1: flag for whether to batch normalize following first conv
        apply_bn_2: flag for whether to batch normalize following second conv
        us_stride: upsampling ratio in the fractionally strided convolution
        use_pooling: whether to use unpooling or fractional striding
        init_func: function for initializing module parameters
        mod_name: text name for identifying module in theano graph
        rand_type: whether to use Gaussian or uniform randomness
    """
    def __init__(self, filt_shape, in_chans, out_chans, rand_chans,
                 use_rand=True, apply_bn_1=True, apply_bn_2=True,
                 us_stride=2, use_pooling=True,
                 init_func=None, mod_name='gm_conv',
                 rand_type='normal'):
        assert ((filt_shape[0] % 2) > 0), "filter dim should be odd (not even)"
        self.filt_dim = filt_shape[0]
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.rand_chans = rand_chans
        self.use_rand = use_rand
        self.apply_bn_1 = apply_bn_1
        self.apply_bn_2 = apply_bn_2
        self.us_stride = us_stride
        self.use_pooling = use_pooling
        self.mod_name = mod_name
        self.rand_type = rand_type
        self.rng = RandStream(123)
        if init_func is None:
            self.init_func = inits.Normal(scale=0.02)
        else:
            self.init_func = init_func
        self._init_params() # initialize parameters
        return

    def _init_params(self):
        """
        Initialize parameters for the layers in this generator module.
        """
        if self.use_rand:
            # random values will be stacked on exogenous input
            self.w1 = self.init_func((self.out_chans, (self.in_chans+self.rand_chans), self.filt_dim, self.filt_dim),
                                     "{}_w1".format(self.mod_name))
        else:
            # random values won't be stacked on exogenous input
            self.w1 = self.init_func((self.out_chans, self.in_chans, self.filt_dim, self.filt_dim),
                         "{}_w1".format(self.mod_name))
        self.w2 = self.init_func((self.out_chans, self.out_chans, self.filt_dim, self.filt_dim), 
                                 "{}_w2".format(self.mod_name))
        self.params = [self.w1, self.w2]
        # make gains and biases for transforms that will get batch normed
        if self.apply_bn_1:
            gain_ifn = inits.Normal(loc=1., scale=0.02)
            bias_ifn = inits.Constant(c=0.)
            self.g1 = gain_ifn((self.out_chans), "{}_g1".format(self.mod_name))
            self.b1 = bias_ifn((self.out_chans), "{}_b1".format(self.mod_name))
            self.params.extend([self.g1, self.b1])
        if self.apply_bn_2:
            gain_ifn = inits.Normal(loc=1., scale=0.02)
            bias_ifn = inits.Constant(c=0.)
            self.g2 = gain_ifn((self.out_chans), "{}_g2".format(self.mod_name))
            self.b2 = bias_ifn((self.out_chans), "{}_b2".format(self.mod_name))
            self.params.extend([self.g2, self.b2])
        return

    def apply(self, input, rand_vals=None):
        """
        Apply this generator module to some input.
        """
        batch_size = input.shape[0]
        bm = int((self.filt_dim - 1) / 2) # use "same" mode convolutions
        ss = self.us_stride               # stride for "learned upsampling"
        if self.use_pooling:
            # "unpool" the input if desired
            input = input.repeat(ss, axis=2).repeat(ss, axis=3)
        # get shape for random values that will augment input
        rand_shape = (batch_size, self.rand_chans, input.shape[2], input.shape[3])
        if self.use_rand:
            # augment input with random channels
            if rand_vals is None:
                if self.rand_type == 'normal':
                    rand_vals = self.rng.normal(size=rand_shape, avg=0.0, std=1.0, \
                                                dtype=theano.config.floatX)
                else:
                    rand_vals = self.rng.uniform(size=rand_shape, low=-1.0, high=1.0, \
                                                 dtype=theano.config.floatX)
            rand_vals = rand_vals.reshape(rand_shape)
            # stack random values on top of input
            full_input = T.concatenate([rand_vals, input], axis=1)
        else:
#.........这里部分代码省略.........
开发者ID:ml-lab,项目名称:MatryoshkaNetworks,代码行数:103,代码来源:MatryoshkaModules.py


注:本文中的theano.sandbox.cuda.rng_curand.CURAND_RandomStreams.uniform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。