本文整理汇总了Python中tflearn.layers.core.input_data函数的典型用法代码示例。如果您正苦于以下问题:Python input_data函数的具体用法?Python input_data怎么用?Python input_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了input_data函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _model1
def _model1():
global yTest, img_aug
tf.reset_default_graph()
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
network = input_data(shape=[None, inputSize, inputSize, dim],
name='input',
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 32, 3, strides = 4, activation='relu')
network = max_pool_2d(network, 2, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, strides = 2, activation='relu')
network = max_pool_2d(network, 2, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, len(Y[0]), activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=3)
model.fit(X, Y, n_epoch=epochNum, validation_set=(xTest, yTest),
snapshot_step=500, show_metric=True, batch_size=batchNum, shuffle=True, run_id=_id + 'artClassification')
if modelStore: model.save(_id + '-model.tflearn')
示例2: cnn
def cnn():
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': X}, {'target': Y}, n_epoch=20,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='cnn_demo')
示例3: neural_network_model
def neural_network_model(input_size):
network = input_data(shape=[None, input_size, 1], name='input')
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=LR,
loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(network, tensorboard_dir='log')
return model
示例4: createModel
def createModel(nbClasses,imageSize):
print("[+] Creating model...")
convnet = input_data(shape=[None, imageSize, imageSize, 1], name='input')
convnet = conv_2d(convnet, 64, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 128, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 256, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 512, 2, activation='elu', weights_init="Xavier")
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='elu')
convnet = dropout(convnet, 0.5)
convnet = fully_connected(convnet, nbClasses, activation='softmax')
convnet = regression(convnet, optimizer='rmsprop', loss='categorical_crossentropy')
model = tflearn.DNN(convnet)
print(" Model created! ✅")
return model
示例5: alexnet
def alexnet(width, height, lr, output=3):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例6: do_cnn
def do_cnn(trainX, trainY,testX, testY):
global n_words
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)
# Building convolutional network
network = input_data(shape=[None, MAX_DOCUMENT_LENGTH], name='input')
network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch = 20, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)
示例7: _model2
def _model2():
global yTest, img_aug
tf.reset_default_graph()
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
net = input_data(shape=[None, inputSize, inputSize, dim],
name='input',
data_preprocessing=img_prep,
data_augmentation=img_aug)
n = 2
j = 64
'''
net = tflearn.conv_2d(net, j, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.residual_block(net, n, j)
net = tflearn.residual_block(net, 1, j*2, downsample=True)
net = tflearn.residual_block(net, n-1, j*2)
net = tflearn.residual_block(net, 1, j*4, downsample=True)
net = tflearn.residual_block(net, n-1, j*4)
net = tflearn.residual_block(net, 1, j*8, downsample=True)
net = tflearn.residual_block(net, n-1, j*8)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
'''
net = tflearn.conv_2d(net, j, 7, strides = 2, regularizer='L2', weight_decay=0.0001)
net = max_pool_2d(net, 2, strides=2)
net = tflearn.residual_block(net, n, j)
net = tflearn.residual_block(net, 1, j*2, downsample=True)
net = tflearn.residual_block(net, n-1, j*2)
net = tflearn.residual_block(net, 1, j*4, downsample=True)
net = tflearn.residual_block(net, n-1, j*4)
net = tflearn.residual_block(net, 1, j*8, downsample=True)
net = tflearn.residual_block(net, n-1, j*8)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
net = tflearn.fully_connected(net, len(yTest[0]), activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=mom,
loss='categorical_crossentropy')
model = tflearn.DNN(net, checkpoint_path='model2_resnet',
max_checkpoints=10, tensorboard_verbose=3, clip_gradients=0.)
model.load(_path)
pred = model.predict(xTest)
df = pd.DataFrame(pred)
df.to_csv(_path + ".csv")
newList = pred.copy()
newList = convert2(newList)
if _CSV: makeCSV(newList)
pred = convert2(pred)
pred = convert3(pred)
yTest = convert3(yTest)
print(metrics.confusion_matrix(yTest, pred))
print(metrics.classification_report(yTest, pred))
print('Accuracy', accuracy_score(yTest, pred))
print()
if _wrFile: writeTest(pred)
示例8: train_nmf_network
def train_nmf_network(mfcc_array, sdr_array, n_epochs, take):
"""
:param mfcc_array:
:param sdr_array:
:param n_epochs:
:param take:
:return:
"""
with tf.Graph().as_default():
network = input_data(shape=[None, 13, 100, 1])
network = conv_2d(network, 32, [5, 5], activation="relu", regularizer="L2")
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, [5, 5], activation="relu", regularizer="L2")
network = max_pool_2d(network, 2)
network = fully_connected(network, 128, activation="relu")
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation="relu")
network = dropout(network, 0.8)
network = fully_connected(network, 1, activation="linear")
regress = tflearn.regression(network, optimizer="rmsprop", loss="mean_square", learning_rate=0.001)
# Training
model = tflearn.DNN(regress) # , session=sess)
model.fit(
mfcc_array,
sdr_array,
n_epoch=n_epochs,
snapshot_step=1000,
show_metric=True,
run_id="repet_choice_{0}_epochs_take_{1}".format(n_epochs, take),
)
return model
示例9: train_repet_network
def train_repet_network(beat_spectrum_array, sdr_array, n_epochs, take):
"""
:param beat_spectrum_array:
:param sdr_array:
:param n_epochs:
:param take:
:return:
"""
beat_spec_len = 432
with tf.Graph().as_default():
input_layer = input_data(shape=[None, beat_spec_len, 1])
conv1 = conv_1d(input_layer, 32, 4, activation="relu", regularizer="L2")
max_pool1 = max_pool_1d(conv1, 2)
conv2 = conv_1d(max_pool1, 64, 80, activation="relu", regularizer="L2")
max_pool2 = max_pool_1d(conv2, 2)
fully1 = fully_connected(max_pool2, 128, activation="relu")
dropout1 = dropout(fully1, 0.8)
fully2 = fully_connected(dropout1, 256, activation="relu")
dropout2 = dropout(fully2, 0.8)
linear = fully_connected(dropout2, 1, activation="linear")
regress = tflearn.regression(linear, optimizer="rmsprop", loss="mean_square", learning_rate=0.001)
# Training
model = tflearn.DNN(regress) # , session=sess)
model.fit(
beat_spectrum_array,
sdr_array,
n_epoch=n_epochs,
snapshot_step=1000,
show_metric=True,
run_id="repet_choice_{0}_epochs_take_{1}".format(n_epochs, take),
)
return model
示例10: neural_network_model
def neural_network_model(input_size):
"""
Function is to build NN based on the input size
:param input_size: feature size of each observation
:return: tensorflow model
"""
network = input_data(shape=[None, input_size], name='input')
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 128, activation='relu')
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, learning_rate=LR, name='targets')
model = tflearn.DNN(network, tensorboard_dir='logs/ann/ann_0')
return model
示例11: build_model_anything_happening
def build_model_anything_happening():
### IS ANY OF THIS NECESSARY FOR LIGHT/DARK? IN GENERAL W/ STAIONARY CAMERA?
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
# Specify shape of the data, image prep
network = input_data(shape=[None, 52, 64],
data_preprocessing=img_prep,
data_augmentation=img_aug)
# Since the image position remains consistent and are fairly similar, this can be spatially aware.
# Using a fully connected network directly, no need for convolution.
network = fully_connected(network, 2048, activation='relu')
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.00003)
model = tflearn.DNN(network, tensorboard_verbose=0)
return model
示例12: alexnet
def alexnet():
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))
# Building 'AlexNet'
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=0.001)
# Training
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2)
model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id='alexnet')
示例13: build_network
def build_network(self):
# Building 'AlexNet'
# https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
# https://github.com/DT42/squeezenet_demo
# https://github.com/yhenon/pysqueezenet/blob/master/squeezenet.py
print('[+] Building CNN')
self.network = input_data(shape = [None, SIZE_FACE, SIZE_FACE, 1])
self.network = conv_2d(self.network, 96, 11, strides = 4, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = conv_2d(self.network, 256, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = conv_2d(self.network, 256, 3, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = local_response_normalization(self.network)
self.network = fully_connected(self.network, 1024, activation = 'tanh')
self.network = dropout(self.network, 0.5)
self.network = fully_connected(self.network, 1024, activation = 'tanh')
self.network = dropout(self.network, 0.5)
self.network = fully_connected(self.network, len(EMOTIONS), activation = 'softmax')
self.network = regression(self.network,
optimizer = 'momentum',
loss = 'categorical_crossentropy')
self.model = tflearn.DNN(
self.network,
checkpoint_path = SAVE_DIRECTORY + '/alexnet_mood_recognition',
max_checkpoints = 1,
tensorboard_verbose = 2
)
self.load_model()
示例14: do_cnn_doc2vec
def do_cnn_doc2vec(trainX, testX, trainY, testY):
global max_features
print "CNN and doc2vec"
#trainX = pad_sequences(trainX, maxlen=max_features, value=0.)
#testX = pad_sequences(testX, maxlen=max_features, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)
# Building convolutional network
network = input_data(shape=[None,max_features], name='input')
network = tflearn.embedding(network, input_dim=1000000, output_dim=128,validate_indices=False)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.8)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY,
n_epoch=5, shuffle=True, validation_set=(testX, testY),
show_metric=True, batch_size=100,run_id="review")
示例15: do_cnn_doc2vec_2d
def do_cnn_doc2vec_2d(trainX, testX, trainY, testY):
print "CNN and doc2vec 2d"
trainX = trainX.reshape([-1, max_features, max_document_length, 1])
testX = testX.reshape([-1, max_features, max_document_length, 1])
# Building convolutional network
network = input_data(shape=[None, max_features, max_document_length, 1], name='input')
network = conv_2d(network, 16, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': trainX}, {'target': trainY}, n_epoch=20,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='review')